泊松分布极大似然估计量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:01:33
为书写方便设θ=mE(x)=1*m²+2*2m(1-m)+3*(1-m)²=3-2mm的拔=(1+2+1)/3=4/3=E(x)=3-2m则m的矩估计=5/6似然函数L(m)=m&
参数为δ.L(δ)=f(ξ1,ξ2,...,ξn;δ)=f(ξ1)f(ξ2)...f(ξn)=[(1/2δ)^n]*exp{-(1/δ)(|ξ1|+|ξ2|+...|ξn|)}为方便暂记|ξ1|+|ξ
.求极大似然函数估计值的一般步骤:(1)写出似然函数;(2)对似然函数取对数,并整理;(3)求导数;(4)解似然方程所谓矩估计法,就是利用样本矩来估计总体中相应的参数.最简单的矩估计法是用一阶样本原点
x的平均值这个打不出来啊,大概思想是求出似然函数,就是n个泊松概率函数求积,然后取对数,就是ln(n个泊松概率函数求积),之后对λ求导,让得出来的式子等于零.再问:过程!!结果我知道
套用公式计算,经济数学团队帮你解答.请及时评价.再问:这一步是怎么的,看不懂 谢谢了再答:
详细解答如下,点击放大:
设总体X服从(0-1)分布,P(X=1)=p,P(X=0)=1-p.似然函数L(p)=p^x1(1-p)^(1-x1)*...*p^xn(1-p)^(1-xn)=p^(x1+...+xn)*(1-p)
极大似然估计的方法:1、构造似然函数,L(x1,x2,...,xn)=每个Xi密度函数的连乘.每个Xi的密度函数与总体的密度函数相同.2、求L(x1,x2,...,xn)或lnL(x1,x2,...,
楼上的.是"Pleasestudyhard.”
E[X]=NP;Var[X]=NP(1-P);矩估计:总体的一阶原点矩为E[X]=NP;样本的一阶原点矩为_X,用样本估计总体,有^p=_X/N;极大似然估计:^p=_X/N;
用公式计算即可,经济数学团队帮你解答.请及时评价.
这个问题其实很简单按照公式积分就好了
C.若存在Xi=min(X1,X2,..,Xn).此时似然函数就是e^-(X1+X2+..+Xn-ntheta)theta取min(X1,X2,..,Xn)达最大
矩估计法EX=∫xf(x)dx=(θ+1)/(θ+2)--->θ=(1-2EX)/(EX-1)极大似然法L(x,θ)=(θ+1)^n(x1.x2...xn)^θLn(L(x,θ))=nLn(θ+
再答:�����再问:??再答:什么情况?再问:能帮我做一下再问:新的问题再答:可以再问:发图噢再答:你发过来吧再问:再答:不好意思力学都忘了再问:……再答:你什么专业?
所谓估计就是用样本的值来近似代替总体中未知参数的值,所以:既然λ的似然估计是X的均值,那它平方是的似然估计就是样本均值的平方.极大似然估计
额这个问题专业的说还好才学过···钜估计是指依据格里文科定理(即总体特征数可以用样本特征数来估计)利用样本的钜来估计总体的未知系数的方法例如总体密度函数为p(x;a,b)x1,x2,```xn是一个样
以b为例,题中前提条件是所有的xi要小于b,因此,b在满足该条件下取最小值,即为xi中的最大值,因为必须满足xn