泊松分布的期望和方差
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:03:26
瑞利分布的概率密度为:p(x)=2x/b*e^(-x^2/b)(积分限为0到+∞)E=∫xp(x)dx=2/b*∫x^2*e(-x^2/b)dx=-∫xd(e(-x^2/b))=-xe(-x^2/b)
期望:可以看做是平均值,方差:用来度量随机变量和其数学期望(即均值)之间的偏离程度.
泊松分布P{X=k}=(λ^k)·e^(-λ)/k!P{X=1}=λ·e^(-λ)P{X=2}=λ²·e^(-λ)/2因为P{X=1}=P{X=2}所以λ·e^(-λ)=λ²·e^
方差是3.这是泊松分布,P(λ),也可以写成X~π(λ),P(X=k)=λ的k次方乘以e的(-λ)次方除以k的阶乘(这里用不了公式编辑器,只能口头叙述了).用期望和方差的公式可以推导出E(X)=λ,D
再答:完全根据定义来推导,中间利用求和技巧,就能顺利求出再答:不知道我表达清楚了没有,若有疑问请追问哦再问:问下。哪几个标准正态分布的结果是要记住的?再答:我只记得住正太,卡方,指数,平均的均值,有的
XH(n,M,N)例N个球有M个黑球取n个黑球则EX=nM/NDX=nM/N*(1-M/N)*(N-n)/(N-1)其实可以和二项分布类比的..二项分布就是超几何分布的极限
额、、其实Xi^2不就服从自由度为1的卡方分布么?因为卡方分布期望为自由度,方差为2*自由度.所以D(Xi^2)=2了
二项分布b(n,p)期望np方差np(1-p)几何分布G(p)期望1/p方差(1-p)/(pXp)
poisson(a),即V满足λ=a的泊松分布,P(X=k)=λ^k*e^(-λ)/k!泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率.泊松分布适合于描述单位时间内随机事件发生的次数.
泊松分布,分布列为(p^k)*exp(-p)/k!,k=0,12,…….数学期望和方差均为p
X~P(λ)期望E(X)=λ方差D(X)=λ利用泊松分布公式P(x=k)=e^(-λ)*λ^k/k!可知P(X=0)=e^(-λ)再问:那么P(X>1)之类的怎么求呢??再答:可以用积分来求,不知道你
如果X~P(a)那么E(x)=D(x)=a;证明过程实在不好写(很多符号)先证明E(x)=a;然后按定义展开E(x^2)=a^2+a;因为D(x)=E(x^2)-[E(x)]^2;得证.典型的有:0-
相等的,根据同分布就可知道
均匀分布,期望是(a+b)/2,方差是(b-a)的平方/12二项分布,期望是np,方差是npq泊松分布,期望是p,方差是p指数分布,期望是1/p,方差是1/(p的平方)正态分布,期望是u,方差是&的平
E(n)=1/p,D(n)=(1-p)/p^2
常见的有正态分布,二项分布,指数分布,均匀分布正态分布N~(a,b)EX=aDX=b二项分布B~(n,p)EX=npDX=np(1-p)指数分布λEX=λ分之一DX=λ^2分之一均匀分布在(a,b)之
卡方分布:E(X)=n,D(X)=2nt分布:E(X)=0(n>1),D(X)=n/(n-2)(n>2)F(m,n)分布:E(X)=n/(n-2)(n>2)D(X)=[2n^2*(m+n-2)]/[m
P(λ)E(X)=λD(X)=λX指数分布E(X)=1/λD(X)=1/λ
E(X)=入,Var(X)=入再答:再问:再答:既然书上有了,记住结论就好啦再问:可以教我一下不。再答:书上有过程再答:中心极限没学过😢😢我是文科生,这题不会做sorr