泰勒公式中两个无穷小的乘积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:22:05
在c1中输入=A1*B1后按enter键.在A和B中将数据输入后,将鼠标放在C列,输入公式的那一个单元格,会显示一个“+”的符号,直接往下拖,就会自动计算出来结果了.再问:但是往下拖的那些自动计算的结
泰勒公式的目的主要是用多项式来逼近复杂的函数,具有形式简单,计算方便的有点,主要是用来简化运算.但也有精度不高的缺点.我也刚学泰勒,我认为不需要把泰勒公式理解的多么透彻,知道怎么灵活的使用就行了.
这个没有错,只是比较灵活而已.e^x2那个展开到到2阶最高次方是四次方,按照习惯是应该写o(x^4)的,但是如果这个式子展开到3阶,最高次方就是x的6次方了,已经超过5阶了,所以你可以认为x^4之后的
/>总结来说:A-B型,适用于“幂次最低”原则.具体来说:即将A,B分别展开到它们的系数不相等的x的最低次幂为止.如果不明白可以再问.
因为无穷小是“局步有界函数”n个无穷小的积可以看成n-1个局部有界函数与一个无穷小的积所以还是无穷小再问:什么是“局部有界函数”?再答:就是在某领域内有界
不是很理解你的问题,既然在闭区间[a,b]内有直到n+1阶的导数,那么在a和b展开也不奇怪了补充:在闭区间端点的导数其实是开区间内电导数的极限,只要求一边可导即可,不像通常可导的定义要求两边可导且导数
朋友,是这样,加减法时低阶吸收高阶,乘除法时阶数累加再问:我知道了,非常感谢再问:再问:假设S在H中的两个开区间内,是这两个区间都有s,还是有s中的一部分,即两个拼一起能覆盖s?求专业人士解答
个人觉得这无关紧要.因为佩亚诺余项的高阶无穷小只是一个后缀,最终都会因为趋向于0而消去的.它在题目中引起的误差可以忽略不计.而且前面的泰勒公式展开后第四项x的系数是6,所以不管是o(x^4)还是o(x
再问:第一步到第二步是怎么回事哈,就是泰勒公式的运用那步求详细写法?再答:是第一题吗?再问:是的再答:书上有的这个公式再问:我书没有这个公式。如果用泰勒公式怎么解再答:f(x)=sqrt(1+3/x)
充分性是显然的,只要两个等价,则它们的n阶导数都相等.但必要性却只要其一阶导数相等即可,因为若y1'=y2'则两边积分有:y1=y2+C它们会相差一个常数项.再问:所谓等价的理解为,函数图像重合再答:
sinx=x-x3/6+o(x3)和sinx=x-x3/6+o(x4)都可以.因为sinx的泰勒公式的下一项是x5/5!,它比x3、x4都高阶,所以这个地方写o(x3)还是o(x4)都可以.不过如果题
不是说一定要趋于X0,而是说x和x0越接近,所求出来的值与精确值越相近,你所举的例子由于用的是麦克劳林公式,x0=0,所以x要和0比较接近才可以,所以30分解成3(1+1/9),1/9就和0比较接近,
正确,如果不适用洛比达法则,用泰勒公式则是必然的方法
好像不是的,提出泰勒公式的泰勒(BrookTaylor)是18世纪早期英国牛顿学派最优秀代表人物之一,于1685年8月18日在英格兰德尔塞克斯郡的埃德蒙顿市出生.1701年,泰勒进剑桥大学的圣约翰学院
对的但对于加法未必成立
一般o(x)中的次数和前面项的最高次相等即可但主要还要看分母k是多少k阶无穷小概念是lim(x->0)A/B=cc为非零常数泰勒公式要展开到几次要看底数x^k的k为多少比如这道题lim(x->0)[l
设u=u(x),v=v(x)对x都可导y=uv=u(x)v(x)按导数的定义,设在x处有改变量t,则y的改变量Y=u(x+t)v(x+t)-u(x)v(x)=u(x+t)v(x+t)-u(x)v(x+
因为它不是对x求导,而是对θx整体求导.你可以用u代替θx再问:我认为(e^θx)'=θe^θx再答:
那么长的推导过程,看书就行了.百度上谁打那么多字和运算符号.