fx= |x-2| gx=2∧x x-2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:01:08
很高兴为你虽然f(x),g(x)表达式一样,但定义域不同,是两个不同的函数那么:f(x)=x^2-2x=(x-1)^2-1,表示开口向上,顶点在(1,-1),对称轴为x=1的抛物线,因此函数f(x)在
f(x)=-f(x);g(x)=g(-x)因:f(x)+g(x)=x^2-2x.1则:f(-x)+g(-x)=g(x)-f(x)=x^2+2x.21+2得:2g(x)=2x^2故得:g(x)=x^21
/>设f(x)=ax²+bx+c,因为f(0)=0+0+c=1,所以f(x)=ax²+bx+1,所以f(x+1)-f(x)=a(x+1)²+b(x+1)+1-(ax
令F(x)=G(x),解得x=2(-6舍去)由题意求出F(x)和G(x)的较小的,画出互相可知,当3/2≤x≤2时,F(x)≥G(x),当x>2时,F(x)<G(x)
f(x)+g(x)=x^4+3x-2①则f(-x)+g(-x)=x^4-3x-2②因为f(x)是偶函数,g(x)函数为奇函数所以f(-x)=f(x),g(-x)=-g(x)所以②式可以化为f(x)-g
再问:...好像不太对
(1)如果函数g(x)的单调递减区间为(-1/3,1),求函数g(x)的解析式(2)在(1)的条件下,求函数y=g(x)的图像过点p(1,1)的切线方程(3)对一切的x属于(0,+无穷),2f(x)小
(1)对a进行分类讨论:a=2时f(x)在R上单调增加;a《2时x《(a+2)/2时单调增加,(a+2)/2《x《2时单调减小,x》2时单调增加;a》2时x《2时单调增加,2《x《(a+2)/2时单调
设(x,y)是g(x)图像上的一点因为:函数fx和gx的图象关于原点对称所以:(-x,-y)是f(x)图像上的点因为:fx=x^2+2x所以:-y=(-x)^2+2(-x)y=-x^2+2x所以:g(
f'=e^x+xe^x,g'=2ax+1f'-g'=e^x-1+xe^x-2axx>等于0时.恒有fx>等于gxf'-g'>0,解得a>0
解由曲线fx与gx在公共点A(1,0)处有相同的切线知曲线fx与gx相较于A(1,0)即把A(1,0)代入函数gx=ax^2-x即g(1)=a-1=0即a=1故g(x)=x^2-x求导得g'(x)=2
x+1>0=>x>-1①3x+2>0=>x>-2/3②g(x)>=f(x)=>g(x)-f(x)>=0即log2[(3x+2)/(x+1)]>=0所以(3x+2)/(x+1)>=1解得x>=-1/2③
1)h(x)=2x=f(x)+g(x)1)以-x代入x,得:h(-x)=-2x=f(-x)+g(-x),因f(-x)=f(x),g(-x)=-g(x),所以此式化为:-2x=f(x)-g(x)2)1)
由于f(x)是奇函数,g(x)是偶函数,所以f(x)=-f(-x),g(x)=g(-x).根据已知条件,可得f(-x)-g(-x)=(-x)^2+2x-3,那么-f(-x)-g(x)=x^2+2x-3
所以f(-x)-g(-x)=x^2+x所以-f(x)-g(x)=x^2+xf(x)+g(x)=-x^2-x②f(x)-g(x)=x^2-x①①+②得2f(x)=-2xf(x)=x带入①得x-g(x)=
1.先对Fx求导,由题意知F`(1/2)=0可得出a的值2.由F`(x)=2a^2,再根据x的范围可解
因f1=2所以m=1易知fx为奇函数所以F(-x)=f(-x)Xg(-x)=f(x)Xg(x)=F(x)所以F(x)为偶函数
答:f(x)=x^2+ax,g(x)=lnxy=f(x)-g(x)=x^2+ax-lnxy'=2x+a-1/x因为:y''=2+1/x^2>0所以:y'=2x+a-1/x是增函数y在[1,2]上是减函
/>f(x)+g(x)=a^x-a^(-x)+2①f(-x)+g(-x)=a^(-x)-a^(x)+2f(x)是奇函数,g(x)是偶函数即-f(x)+g(x)=a^(-x)-a^(x)+2②∴2g(x