fx=ax-2-lnx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 07:08:32
fx=ax-2-lnx
已知函数fx=ax-b/x-2lnx,f(1)=0.

易求得a=b=1,f'(x)=1+1/x^2-2/xa(n+1)=a(n)^2-2na(n)+1再数学归纳法证明...

已知函数fx=lnx-ax^2+(2-a)x 讨论函数的单调性!

答:f(x)=lnx-ax²+(2-a)x,x>0求导得:f'(x)=1/x-2ax+2-a=[-2ax²+(2-a)x+1]/x=-(2x+1)(ax-1)/x因为:x>0所以:

已知函数fx=ax^2+lnx

fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma

已知函数fx=ax+lnx ( a属于R)

(1)f'(x)=2+1/xf'(1)=3就是切线的斜率(2)f'(x)=a+1/x令a+1/x=0,x=-1/a当a>=0时,f'(x)>0,在x>0范围内单调递增,当a-1/a时函数递增0

fx=(a+1)lnx+ax^2 +1的导数怎么求求详细步骤?

f'(x)=(a+1)/x+2axa是常数,x才是自变量.

已知函数fx=ax+lnx 1 若a=2 求曲线y=fx在x=1处切线的斜率

f(x)=2x+lnx切线斜率即导数求导,带入f'(x)=x+1/xf'(1)=2

一道导数数学题.设函数fx=ax-2-lnx

原式即证:e^x>lnx+2∵e^x>x+1(用导数证)x-1>lnx(用导数证)∴e^x>x+1=x-1+2>lnx+2结论得证(上面的大于号都带等但不同是取等)

已知函数fx=lnx+ax^2+x,gx=e^x-ax

再问:...好像不太对

已知函数fx=lnx,gx=二分之一ax的平方加bx ,若a=-2,函数hx=fx-gx在其定义域

由已知函数f(x)=lnx,定义域x>0;函数g(x)=ax2/2+bx,若a=-2,那么g(x)=-x2+bx;所以函数h(x)=f(x)–g(x)=lnx–(-x2+bx)=lnx+x2–bx,定

已知函数fx=ax+lnx (a属于R) (1)求fx的单调递增区间 (2)已知gx=4^

推荐回答1.f'(x)=a+1/x=a(x+1/a)/x当a>0时,-1/a0,解得:0

fx=lnx-1/2ax²+x,求函数单调区间

定义域为(0,+∞).f'(x)=1/x-ax+1=(-ax²+x+1)/x.当a≤0时,f'(x)=(-ax²+x+1)/x>0在(0,+∞)恒成立,所以f(x)在(0,+∞)上

已知函数fx=-x^2+ax+lnx+b 若函数fx在x=1处切线方程y=2 求a,b值

f(x)=-x^2+ax+lnx+b,f'(x)=-2x+a+1/x,由已知得,f(1)=2,所以-1+a+b=2,--------(1)同时f'(1)=0,所以-2+a+1=0,-------(2)

设fx=1/2*ax^2-2ax+lnx ,已知函数fx有两个极值点x1x2

fx=1/2*ax^2-2ax+lnx有两个极值点x1x2,则fx'=ax-2a+1/x=0有x1x2两个零点.由函数定义域知x>0,所以,ax^2-2ax+1=0有x1x2两个零点.所以,(2a)^

已知函数fx=x+ax-lnx,当a=1时,求fx的单调区间

fx的导数=1+a-1/x,把a=1带入,原式=2-1/x当2-1/x>0即x>1/2或x再问:嗯嗯再答:采纳一下吧,纯手打,谢了再问:呵呵。、不错

fx=(lnx+k)/e^2求导

f(x)=(lnx+k)/e^2f'(x)=1/e^2*(1/x)=1/xe^2

已知函数fx=x的平方+ax-lnx(a属于R) 1,若函数fx在《1,2》上是减函数,求实数a的取值

希望对你有所帮助 再问:请问当a属于(0,e)是怎样证明e平方x的平方-2分之5x大于(x+1)lnx呢?再答:我刚才还以为你 就问2问呢 嘿嘿 加油~~若可以

已知函数fx=x方+ax,gx=lnx,若函数y=fx-gx在【1,2】上是减函数,

答:f(x)=x^2+ax,g(x)=lnxy=f(x)-g(x)=x^2+ax-lnxy'=2x+a-1/x因为:y''=2+1/x^2>0所以:y'=2x+a-1/x是增函数y在[1,2]上是减函

函数fx=x2-2lnx最小值

解由fx=x2-2lnx知x>0求导得f'(x)=2x-2/x=(2x^2-2)/x令f'(x)=0解得x=1或x=-1当x属于(0,1)时,f'(x)<0当x属于(1,正无穷大)时,f'(x)>0故