fx=sin(2x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:01:54
f(x_=(cosx+sinx)(cosx-sinx)=cos²x-sin²x=cos2x所以T=2π/2=πf(α/2)=cosα=1/3sin²α+cos²
f(x)=√3sin²x+sinxcosx=√3[(1-cos2x)/2]+1/2sin2x=1/2sin2x-√3/2cos2x+√3/2=sin(2x-π/3)+√3/2∵x∈[π/2,
设函数fx=sin(φ-2x)(0
fx=2sin(2x+pai/6)振幅A=2最小正周期T=2pai/2=paix∈【0,pai/]2xE[0,2pai]2x+pai/6E[pai/6,2pai+pai/6]很明显,设u=2x+pai
fx=4cos²x-2+1-cos²x-4cosx=3cos²x-4cosx-1令t=cosx则-1≤t≤1即求[3t²-4t-1]的最值
F(X)=(1+cos2x)sin²x问F(X)是最小正周期为多少的什么函数F(x)=(1+cos2x)sin²x=(1+cos2x)(1-cos2x)/2=(1-cos²
f(x)=cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)=cos(2x-π/3)+2sin(x-π/4)cos[π/2-(x+π/4)]=cos(2x-π/3)+2sin(x-π/
(1)f(x)=[cos(x-π/6)]^2-(sinx)^2f(π/12)=(cos(π/12))^2-(sin(π/12))^2=cos(π/6)=√3/2(2)f(x)=[cos(x-π/6)]
f(x)=(√3/2)sin2x-(1/2)[(cosx)^2-(sinx)^2]-1=(√3/2)sin2x-(1/2)cos2x-1=sin(2x-π/6)-1f(x)的最大值是0,最小值是-2,
f(x)=2sin(x-π/6)cosx+2cos²x=(2sinxcosπ/6-2cosxsinπ/6)cosx+2cos²x=√3sinxcosx-cos²x+2co
f(x)=(1+1/tanx)*(sinx)^2-2sin(x+π/2)sin(x-π/4)=(1+cosx/sinx)*(sinx)^2+2sin(x+π/4)cos[(x-π/4)+π/2]=(s
f(x)=cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)=(1/2)cos2x+(√3/2)sin2x+(cos(π/2)-cos2x)=-(1/2)cos2x+(√3/2)sin
第一题A.第二题B
你的分析前一半是对的,一直到“那么2x的单调增区间是[-4分之π,4分之π]”.2x的单调递增区间是[-π/2,π/2],x的才是[-π/4,π/4].所以函数在x=-π/3处取得最小值为-2分之根号
(1)fx=sin(2x+φ)经过点(π/12,1)sin(π/6+φ)=1∴π/6+φ=π/2+2kπ,k∈Z∴φ=π/3+2kπ,k∈Z∵0
解答;f(x)=sin(2x+3分之π)∴sin(2x+π/3)=-3/5∵x∈(0,π/2)∴2x+π/3∈(π/3,4π/3)∵sin(2x+π/3)
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数
f(x)=sin(2x+π/6)-cos2x+1所以为2π/2=πf(x)=根号3/2sin2x-(cos2x)/2+1=sin(2x-π/6)+1所以最大值为2,x=π/2+2kπ-π/6=π/3+