g是三角形abc的重心
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:25:32
=0重心是三边中线的交点,延长GA交BC于O,再延长至P,得OP=GO根据中线的性质,GA=2GO,得GA=GP连接BP,CP得BOCP是平行四边形得题中等式=0
要用到解析几何的定比分点公式和中位线定理,具体如下设A(x1,y1),B(x2,y2),C(x3,y3),则AB中点D为((x1+x2)/2,(y1+y2)/2),重心O分有向线段CD的比例为2,由定
设AM是AB边上的中线,延长AM至D,使MD=AM,AD=2AM,向量AD=向量AB+向量BD,以下通为向量,2AM=AB+BD,AM=(AB+BD)/2,BD=AC,AM=(AB+AC)/2,AG=
取BC中点D,连结并延长GD至E,使DE=GD,则四边形BGCE是平行四边形∴向量GB=向量CE∴向量GB+向量GC=向量CE+向量GC=向量GE由向量GA+向量GB+向量GC=0得:向量GB+向量G
设:AB边上的高为CE,中线为CD,则CG=2CD/3;CD=AB/2=5/2∴CG=2/3(5/2)=5/3设G到斜边AB的距离为GF在ΔCDE中:GF/CE=DG/DC===>GF=DG*CE/D
因为G是重心又因为AE平分BC所以AG:GE=2:3因为GD∥EC所以AG:AE=GD:EC=AD:AC=2;3所以三角形AGD和aec相似所以AGD和AEC面积比为4:9因为E是中点所以aec:ab
连接BH由题意知,D是BC、GH的中点,故四边形BGCH是平行四边形.(对角线互相平分的四边形是平行四边形)那么,BG//HC所以∠FGC=∠GCH又因为点F、K分别是AB、BG的中点所以FK//AG
设H1,H2,H3分别为PG1,PG2,PG3交于AB,BC,AC的点,则G1G2//H1H2,G2G3//H2H3.所以,G1G2//面ABC,G2G3//面ABC.又,G1G2与G2G3相交,故面
1、因为重心是中线的三等分点,BG和AF都是它中线的三分之二,按三角形的相似性可知道AB//FG且FG=(1/3)AB,同理可知道AB、BC、AC分别平行于FG、EF、EG &n
解:点G为三角形ABC的重心,则DG/GA=1/2,DG/DA=1/3.GE平行AB,则⊿DGE∽⊿DAB.则S⊿DGE/S⊿DAB=(DG/DA)²=1/9,S⊿DAB=9S⊿DGE=18
因为G是重心所以AD平分BC所以BD=DC因为GE//AB,所以角ABD=角GED又角ADB=角GDE所以三角形ADB相似三角形GDE所以|GD|/|AD|=|ED|/|BD|同理|GD|/|AD|=
因为AB=5,BC=6,所以AD=4,设AO=r,在直角三角形BDO中,由勾股定理,得,r^2=(4-r)^2+3^2解得,r=25/8,因为G是重心所以AG=2AD/3=8/3所以OG=AO-AG=
解∵AB=5,BC=6,∴BD=3∴AD=4,设AO=R,在直角△BDO中,由勾股定理,得,R^2=(4-R)^2+3^2解得,R=25/8,因为G是重心∴AG=2AD/3=8/3∴OG=AO-AG=
在AB上取E点使AE=AB/3.设AC中点为D.BE/BA=BG/BD=2/3,∠ABD=∠EBG△ABD∽△EBG,EG//=2*AD/3=AC/3向量AE=三分之一向量AB向量EG=三分之一向量A
重心和三角形各个顶点的连线,把三角形的面积分成相等的三部分所以三角形BCG的面积=3cm^2
因为向量BC=向量AC-向量AB,向量AG=1/3(向量AB+向量AC),所以向量BC*向量AG=1/3(|AC|²-|AB|²)=1/3(13²-5²)=14
连接CG并延长交AB于H,设CE=X∵G是△ABC的重心∴CG/GH=2/1,AH=BH∵CF∥AB∴CF/DH=CG/GH=2/1∴DH=CF/2=X/2∵DE∥BC∴平行四边形BCFD∴BD=CF
答案等于三分之二根号三