g是三角形abc的重心,过g作bc的平行线与ab,ac交于e,f,若ab=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:09:31
连接CG并延长交AB于H,设CE=X∵G是△ABC的重心∴CG/GH=2/1,AH=BH∵CF∥AB∴CF/DH=CG/GH=2/1∴DH=CF/2=X/2∵DE∥BC∴平行四边形BCFD∴BD=CF
=0重心是三边中线的交点,延长GA交BC于O,再延长至P,得OP=GO根据中线的性质,GA=2GO,得GA=GP连接BP,CP得BOCP是平行四边形得题中等式=0
∵三角形重心分中线为2:1的两线段又EF∥BC∴AF:CF=2:1∵CD∥AB∴△AEF∽△CDF∴EF:DF=AF:CF=2:1EF=2DF=4BC=3EF/2=6
用极限法可以求出也可以用特殊形法
延长AG交BC于MAG=kAD+(1-k)AE因为AD=xAB,AE=yAC所以AG=kxAB+(1-k)yAC①又G为三角形的重心,所以M为三角形的中线(即M为BC中点)所以AM=1/2AB+1/2
设AM是AB边上的中线,延长AM至D,使MD=AM,AD=2AM,向量AD=向量AB+向量BD,以下通为向量,2AM=AB+BD,AM=(AB+BD)/2,BD=AC,AM=(AB+AC)/2,AG=
所谓重心就是过此点的直线分割图形时,图形的两半质量(面积)相等.而直线若同时过重心G和一个顶点A,由于分出的两个三角形面积相等、并且又等高,因此AD=CD.这一点书上应该都会给出来.接下来就很好证明A
M,N,G三点共线==>向量NG=tNM==>AG-AN=t(AM-AN)==>AG=AN+t(AM-AN)==>tAM+(1-t)AN=AG
这道题应该根据PG和PQ共线来解PG=PA+AG=OA-OP+AC=-am+1/3a+1/3bPQ=OQ-OP=nb-ma∴PG=μPQμ·(nb-ma)=-am+1/3a+1/3bkn=1/3.①k
因为BC//平面α,且平面ABC∩α=MN,所以BC//MN,则三角形AMN相似于三角形ABC,因此,若设直线AG与BC交于D,则AG:AD=2:3,所以由MN:BC=AG:AD=2:3得MN=2/3
解析:有结论:若△ABC的中线为AD,重心为G,则AG:GD=2:1,此结论可用向量法和普通平面几何法等进行证明,不再赘述.第一题:1、直角三角形斜边的中线等于斜边的一半,结合以上结论,得GC=(2/
要解这个题目,首先要知道,由平面向量基本定理可推出:当向量a和b不共线时,若实数λ和μ满足λ*a+μ*b=0向量,则λ=μ=0.此题:设向量AB、AC分别为a、b,则AP=λ*a,AQ=μ*b,延长A
上面不是说了共线条件是:m+n=1(表达式1)将m=1/(3x)将n=1/(3y)将m,n代入表达式1不就是1/(3y)=1啊而不是你说的AG等于1;AG=1/(3x)AM+1/(3y)AN
第(1)问简单,不多说,第(2)问发了图片
三角形的重心到各边中点的距离等于这边上中线的三分之一.AG:GD=1:2AF:FC=AG:GD=1:2
选择题可以用特殊值的方法重心时三边中线的交点过G作直线可以任意做,所以就取AC边上的中线即点M与点B重合,点N为AC中点所以x=1y=1/2xy/(x+y)=1/x+1/y=3
在AB上取E点使AE=AB/3.设AC中点为D.BE/BA=BG/BD=2/3,∠ABD=∠EBG△ABD∽△EBG,EG//=2*AD/3=AC/3向量AE=三分之一向量AB向量EG=三分之一向量A
/>先回答第一个问题:这是一个向量共线的基本问题:如果向量满足OA=mOB+nOC的关系(其中m、n为非零实数),且A、B、C三点共线,则必有m+n=1;相反地,如果向量满足OA=mOB+nOC的关系
连接CG并延长交AB于H,设CE=X∵G是△ABC的重心∴CG/GH=2/1,AH=BH∵CF∥AB∴CF/DH=CG/GH=2/1∴DH=CF/2=X/2∵DE∥BC∴平行四边形BCFD∴BD=CF
答案等于三分之二根号三