点a,b,在圆o上,直线ac是圆o的切线,co垂直于ob连接ab交oc于点d
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:53:43
设DA=X,DC=6-DA=6-X,连接EC,AE是直径,所以∠ACE=90°=∠CDA,∠CAE=∠CAD,所以⊿ACE∽⊿ADC,[AA]AE:AC=AC:ADAC²=AE*ADAD
证明:∵∠CAE=∠DBF(已知),∴∠CAB=∠DBA(等角的补角相等).在△ABC和△DBA中AC=BD(已知),∠CAB=∠DBA,AB=BA(公共边),∴△ABC≌△DBA(SAS).∴∠AB
过O作OM⊥AB于M.即∠OMA=90°,∵AB=8,∴由垂径定理得:AM=4,∵∠MDC=∠OMA=∠DCO=90°,∴四边形DMOC是矩形,∴OC=DM,OM=CD.∵AD:DC=1:3,∴设AD
图2结论:AF﹣BF=2OE,图3结论:AF﹣BF=2OE.对图2证明:过点B作BG⊥OE交OE的延长线于G,则四边形BGEF是矩形,∴EF=BG,BF=GE,在正方形ABCD中,OA=OB,∠AOB
(1)连接OC,OE,O和E分别为AB和BD中点,所以OE//AD,即
2AC+CB=02(OC-OA)+OB-OC=02OC-2OA+OB-OC=0OC=2OA-OB
(1)证明:∵AC是⊙切线,∴OA⊥AC,∴∠OAC=90°,∴∠OAB+∠CAB=90°.∵OC⊥OB,∴∠COB=90°,∴∠ODB+∠B=90°.∵OA=OB∴∠OAB=∠B,∴∠CAB=∠OD
(1)证明:如图,过点B作BG⊥OE于G,则四边形BGEF是矩形,∴EF=BG,BF=GE,在正方形ABCD中,OA=OB,∠AOB=90°,∵BG⊥OE,∴∠OBG+∠BOE=90°,又∵∠AOE+
根据题意如图得:∵AB=5cm,OB=1.5cm,∴OA=AB+OB=6.5cm.∵O是AC的中点,∴OC=OA=6.5cm,∴BC=OB+OC=8cm;如图:∵AB=5cm,OB=1.5cm,∴OA
因为PA垂直于圆O所在平面,BC在圆O所在平面内,所以PA垂直于BC因为AB是圆O直径,所以AC垂直于BC所以BC垂直于平面APC所以BC垂直于PC所以角PCA为平面ABC与平面PBC所成角在Rt三角
如图,(1)∵AC切圆O于C,∴∠1+∠2=90°,∵OB⊥OD,∴∠B+∠4=90°,∵OA=OB,∴∠1=∠B,又∵∠3=∠4∴∠2=∠3,∴AC=CD (2)∵OC=√(AC²
(1)AC=CD,理由为:∵OA=OB,∴∠OAB=∠B,∵直线AC为圆O的切线,∴∠OAC=∠OAB+∠DAC=90°,∵OB⊥OC,∴∠BOC=90°,∴∠ODB+∠B=90°,∵∠ODB=∠CD
∠B=∠OAB,∠B+∠ODB=∠OAB+∠DAC=90°∴∠ODB=∠DAC又∵∠ODB=∠ADC∴∠ADC=∠DAC=∠ODB∴CD=AC
(1)证明:∵AC是⊙切线,∴OA⊥AC,∴∠OAC=90°,∴∠OAB+∠CAB=90°.∵OC⊥OB,∴∠COB=90°,∴∠ODB+∠B=90°.∵OA=OB∴∠OAB=∠B,∴∠CAB=∠OD
==多给点分吧我自己写的1.两种情况(1)当c点在AB中时AC=AB-BC=1∵O是AC的中点∴OB=1/2AC=0.5cm(2)当C点在AB的延长线上时AC=AB+BC=7∵O是AC的中点∴OB=1
A————O——B——C∵AB=6,BC=3∴AC=AB+BC=6+3=9∵O是AC的中点∴AO=AC/2=9/2=4.5∴OB=AB-AO=6-4.5=1.5(cm)
分析嘛,看图则暂时确定有3点可以~首先是P跟O重合,然后就是分别在O两边各1点,按个儿分析(1)P与O重合,则必然成立,所以P在AB中点成立.(2)P在O点左侧,则有PQ=OQ即△PQO为等腰三角形,
OC=OA+ACOC=OB+BC==>OC=2(OA+AC)-(OB+BC)=2OA-OB + 2AC+CB=2OA-OB 选 A
AB+OB=AO=OC=1/2ACOC=5+1.5=6.5cmBC=OC+OB=6.5+1.5=8cm
符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60