点d是等边三角形abc中bc边上一点de垂直于ab
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:42:47
仍平行;∵△ABC∽△EDC,∴∠ACB=∠ECD,AC/EC=BC/DC,∴∠ACD+∠BCD=∠ACE+∠ACD,∴∠BCD=∠ACE,∴△ABC∽△EDC,∴∠EAC=∠B,又∵∠ACB=∠B,
点D在BC中点时,四边形CDEF是平行四边形,且∠DEF=30°证明:∵设点D在BC中点∴AD是△ABC的中线∴AD平分∠BAC又∵△ABC是等边三角形∴∠BAD=∠CAD=1/2∠BAC=30°∵C
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
这个题条件不够是不是有D、f是BC、AB的中点或AF=BD
证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形
是等边三角形,证明:AD=BE=CF,AB=BC=CA,→DB=EC=FA,又∵∠A=∠B=∠C=60°,∴△FAD≌△DBE≌△ECF,∴FD=DE=EF,∴△DEF是等边三角形,证毕!
∵△ABC和△CDE都是等边三角形∴BC=AC,CD=CE,∠ACB=∠DCE=60°∴∠BCD=∠ACE∴△BCD≌ACE∴∠CAE=∠B=60°∴∠CAE=∠ACB∴AE‖BC
因为没法画图,根据我的思路写一下吧:∠DCB=60度-∠ACD,∠ECA=60度-∠ACD,所以∠DCB=∠ECA,又因为两个三角形都是等边三角形,所以:BC=AC,DC=EC可证得:△DCB≌△EC
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
分析:(1)可通过全等三角形来证明EN与MF相等,如果连接DE,DF,那么DE就是三角形ABC的中位线,可得出三角形ADE,BDF,DFE,FEC都是等边三角形,那么∠DEF=∠DFM=60°,DE=
由△EAB≌△DCB(SAS)得∠EAB=∠DCB=60°∴∠EAB=∠ABC=60°∴AE∥BC
1、在△ACD和△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2、1)四边形CDEF为平行四边形,理由如下设AB与ED交于G∵△ABC为正三角形∴AC=BC,∠B=∠A
1.三角形ABD和ACE啊证明:边AB=ACAD=AE因为角BAD+角DAC=角EAC+角DAC所以角BAD=角EAC两边夹一角相同,这两个三角形也就相同了.2.因为1两个三角形相等,所以角ABD=角
证明:CE平分∠ACD,∴∠1=∠2=60°,在△ABD和△ACE中,AB=AC,∠B=∠1,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∠BAC=60°,∴∠DA
先证明△ABD≌△BCE因为AB=BC∠ABC=∠ACB=60°BD=CE所以AD=BE又等边△ADF所以AD=DF所以BE=DF因为△ABD≌△BCE所以∠BAD=∠CBE∠ADB=∠BEC∠C=∠
1、∠BAD+∠DAC=∠DAC+∠CAF=60∠BAD=∠CAF而边AB=AC,AD=AF,三角形ABD相似于ACF,CE=BD=CF,角ABD=ACF=60三角形CEF为正三角形2.边BC=BA,
因为CD=BF所以,AF=BD∠BAD=∠CAFBA=CA所以,△BAD≌△CAF所以,AD=CF而由等边三角形ADE知:AD=DE所以,DE=CF∠BCF=∠BCA-∠CAF=60-∠CAF=60-
∵△ABC是等边三角形,D是BC的中点∴∠ABC=60°,∠CAD=30°∵△ADE都是等边三角形∴∠DAE=60°∴∠CAE=60°-30°=30°