点E F分别在在正方形ABCD的边BC,CD上 角EAF=45° 是判断

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:04:30
点E F分别在在正方形ABCD的边BC,CD上 角EAF=45° 是判断
如图,正方形ABCD中,点E,F分别是BC,DC边上的点,且AE垂直于EF

1:延长EF交正方形外交平分线CP于点P,是判断AE与EP的大小关系,并说明理由\x0d2:在AB边上是否存在有一点M,使得四边形DMEP是平行四边形,若存在,请证明,若不存在,请说明理由各位速度

已知,如图所示,正方形ABCD,E、M、F、N分别是AD、AB、BC、CD上的点,若EF⊥MN,求证:EF=MN.

证明:如图,过点E作EG⊥BC于G,过点M作MH⊥CD于H,∵四边形ABCD是正方形,∴EG=MH,EG⊥MH,∴∠1+∠3=90°,∵EF⊥MN,∴∠2+∠3=90°,∴∠1=∠2,∵在△EFG和△

在正方形ABCD中,EF分别为BC,CD上的点 且BE+DF=EF 求证 角EAF=45度

提示:延长CB到H,使得BH=DF,连AH.证三角形AEH全等于三角形AFE.

在 边长为5的正方形ABCD中,点E,F分别是BC,DC边上的点,且AE垂直EF,BE=2(1)延长EF交正方形外角平分

AE=EP证明:在AB上截取AF=CE,连接EF,在BE=BF,∠BFE=45°∵∠AEP=90°∴∠CEP+∠AEB=∠BAE+∠AEB=90°∴∠CEP=∠AEB∵∠AFE=135°,PCE=13

已知:如图,在正方形ABCD中,E、F分别是BC、DC边上的点,且AE⊥EF于点E.

很高兴为您解答!分析:(1)在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP;(2)先证△DAM≌△ABE,进而可得四边形DMEP是平行四边形

如图,在边长为5的正方形ABCD中,点E,F分别是BC,DC边上的点,且AE⊥EF,BE=2.

,在AB上取BM=BE,连接EM,∵ABCD为正方形,∴AB=BC,∵BE=BM,∴AM=EC,∵∠1=∠2,∠AME=∠ECP=135°,∴△AME≌△ECP,∴AE=EP;(3)存在.顺次连接DM

已知:如图,在正方形ABCD中,E、F分别是BC、DC边上的点,且AE垂直于EF于点E

(1)AE=EP.证明:设AB=X,BE=Y,则EC=X-Y.作PG垂直BC的延长线于G,易知PG=CG,设∠BAE+∠AEB=90°=∠AEB+∠PEC,则:∠BAE=∠PEC;又∠B=∠PGE=9

SOS!几何题~在正方形ABCD中,点E,F分别是BC,DC边上的点,且AE垂直EF,延长EF交正方形外角平分线CP于点

1.AP=PE理由如下:在AB上截取线段BG,使BG=BE∵四边形ABCD是正方形∴AB=BC∠B=∠DCB=90°∵PC平分∠DCB的外角∴∠DCP=45°∴∠ECP=135°∵BG=BE∠B=90

在正方形ABCD-A1B1C1D1中,E、F分别是A1D,AC上的点,且EF⊥A1D,EF⊥AC,求证EF平行于BD1

连接CB1,AB1CB1//DA1,EF⊥A1D,那么EF⊥CB1,EF⊥AC所以EF⊥ACB1很容易证DD1B⊥AC,则AC⊥BD1,同理AB1⊥BD1,所以BD1⊥ACB1所以EF//BD1

已知,如图,在正方形ABCD中,点E,F分别在AB上和AD的延长线上,且BE=DF,连接EF,G为EF

(1)证明:∵BE=DF,BC=CD,∠EBC=∠CDF,∴△CEB≌△CFD,∴CE=CF;(2)证明连接AG,CG在Rt△EAF中,∵G是斜边EF的中点,∴AG=GE=GF,又∵△EBC≌△FDC

如图,A‘B’C‘D’分别是正方形ABCD上的点,且AA‘=BB’=CC‘=DD’,点分别相交与EF

AD=BC,DD‘=BB‘→AD‘=B‘C,又AD‘//B‘C→AB‘CD‘为平行四边形→HE//GF同理,有HG//EFEFGH为平行四边形.三角形BCC‘全等于三角形CC‘D(步骤略)→角BC‘C

已知ef分别是正方形ABCD 的边AB和CD中点,沿EF把正方形折成一个直二面角

取BE中点G,DF中点H,EF中点M连接GM,MH,GH∴MH//=1/2DE,MG//=1/2BF∴异面直线BF,DE所成角是∠GMH的补角设原正方形边长=4∴BF=DE=2√5∴MH=GM=√5∵

EF分别是正方形ABCD的边AB和CD的中点,EF,BD相交于点O,以EF为棱将正方形折成直二面角

题目不全啊再问:EF分别是正方形ABCD的边AB和CD的中点,EF,BD相交于点O,,以EF为棱将正方形折成直二面角,求角BOD的度数再问:EF分别是正方形ABCD的边AB和CD的中点,EF,BD相交

已知:如图,正方形ABCD中,点E在BC的延长线上,AE分别交DC,BD于F,G,点H为EF的中点.

证明:(1)∵ABCD为正方形,∴AD=DC,∠ADC=90°,∠ADB=∠CDB=45°,又DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCG;(2)∵ABCD为正方形,∴AD∥BE,∴∠DAG

已知E F分别为正方形ABCD边BC CD上的点 且△AEF为等边三角形,若正方形的边长为1,求EF的长

∵AE=AF;AB=AD.∴Rt⊿ABE≌Rt⊿ADF(HL),BE=DF.∴CE=CF,设CE=CF=X,则BE=1-X;AE=EF=√2X.∵AB^2+BE^2=AE^2,即1^2+(1-X)^2

已知正方形ABCD的边长为1,线段EF//平面ABCD,点E,F在平面ABCD内正投影分别是A,B,且EF到平面ABCD

(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2

在正方形ABCD中,EF分别是CD,AD的中点,BE与CF相交于点P,若AP=18,求正方形ABCD的面积

图你自己画吧,由P向AB,BC,CD,AD作垂线,垂点分别为S,R,Q,T.由定理知,PQ/BC=EQ/EC,PQ/FD=CQ/CD,又因为CD=BC=2FD2EC,EQ=EC-CQ,化简可得4EC=

如图,正方形ABCD中,ENFM分别是各边上的点,EF垂直MN,求证MN=EF

证明:设点E在BC上,点N在CD上,点F在DA上,点M在AB上.又设EF与MN的交点为P过点F作FS⊥BC,交BC于点S;过点N作NT⊥AB,交AB于点T.因为∠B=90°,∠MPE=90°所以∠BM

如图,o是正方形abcd内的一点,ef和gh都经过o点,且ef垂直于gh,ef分别交ab、ac于点e、f,gh分别交bc

过H做GG'垂直AD于G',过E做EE'垂直CD于E'四边形ADOE中,∵HOE=HAE=90°,∴∠AHO+∠AEO=180°又∵∠AHO+∠GHG'=180°∴∠GHG'=∠AEO∵AB//CD∴