点efgh分别在菱形abcd的四条边上且ae=ah=cf=cg
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 09:00:09
证明:(1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF∴EH=GF在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-
设AC、BD相交于O∵菱形ABCD,∴OA=OC,OB=OD,AC⊥BD又AE=CG,BF=DH,∴OE=OG,OF=OH∴△EOF≌△GOH≌△EOH≌△GOF,∴EF=FG=GH=HE∴四边形EF
说明:菱形的对角线互相垂直平分.所以,AC和BD相交成直角,菱形被对角线分成四个直角三角形.E、F、G、H分别是AB、BC、CD、DA的中点,所以,OE,OF,OG,OH分别是四个直角三角形斜边上的中
您的问题,在这里是找不到答案的.平时要仔细认真,这才是解决问题的法宝
第一题:AE=3,因为⊿AEF≌⊿BCF,第2题AE=4.2,此时第一题⊿AEF≌⊿CGH,设AE=X,EF=√25+X平方,DE=10-X,又因为⊿DEH≌⊿BGH,DH=3,EH=√9+(10-X
已经可以证明EFGH是平行四边形GH=1/2ADEF=1/2ADGH=EFGF=1/2BCEH=1/2BCGF=EHEFGH是平行四边形只需要满足BC=AD就可以使得GH=EF=GF=EH
证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴AC=BD,∵EF为△ABD的中位线,∴EF=12BD,EF∥BD,又GH为△BCD的中位线,∴GH=12B
连接EG,FH由图易得等腰梯形EFGHEG=HG所以FH^2=HG^2+FG^2-2HGxFGxcos角HGF EG^2=EH^2+HG^2-2xHGxEHxcos角
在梯形ABCD中,AD//BC,AB=CD,E,F,G,H分别是各边的中点.(1)求证:四边形EFGH是菱形.连接AC,BD,E在AB上,F在BC上,G在CD上,H在AD上因为E,F,G,H分别是各边
因为AC‖平面EFGH,且AC与EF共面所以AC‖EF同理BD‖EH因为AC‖EF所以BE:AB=EF:AC所以BE=AB*EF/AC=AB*EF/m因为BD‖EH所以AE:AB=EH:BD所以AE=
因为AC‖平面EFGH,且AC与EF共面所以AC‖EF同理BD‖EH因为AC‖EF所以BE:AB=EF:AC所以BE=AB*EF/AC=AB*EF/m因为BD‖EH所以AE:AB=EH:BD所以AE=
连接HF∵ABCD是平行四边形∴AD//BC∴∠AHF=∠CFH-------1)又∵AH=CF,AE=CG,∠A=∠C∴△AEH≌△CFG∴∠1=∠2-----------2)1)-2)∴∠3=∠4
还应满足AB=CD,理由如下:∵E、G是AD、BD中点,∴EG=1/2AB,同理FH=1/2AB,∴EG=FH,同理可得FG=EH=1/2CD,∴四边形EGFH是平行四边形,又∵AB=CD,∴EG=F
不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)
连接AC、BD,∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EH=1/2BD,HG=1/2AC,EH∥BD,HG∥AC,FG∥BD,EF∥AC,∴EH∥FG,HG∥EF,∴四边形EFGH是平
四边形ABCD两对角线AC、BD相等
条件是BC=AD因为HE‖=1/2BC‖=GF,同理GH‖=EF,故EFGH为平行四边形,要使四边形EFGH是菱形,则EF=GH,故BC=AD
添加的条件:AC=BD理由:E、F是AB,BC中点,EF是△BAC中位线,EF//AC,EF=1/2ACG、H是CD,DA中点,GH是△DAC中位线,GH//AC,GH=1/2AC所以四边形EFGH是
设正方形ABCD边长是3,则它的面积是9EFGH是正方形,则它与正方形ABCD相交为四个全等的直角三角形,每个三角形的面积是1,即1/2*1*2于是EFGH分别在距离点ABCD1或者2上