点efgh分别是四边形abcd边ab,ad,dc的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:56:06
点efgh分别是四边形abcd边ab,ad,dc的中点
空间四边形ABCD中,EFGH分别是其四边上的点且四点共面AC平行平面EFGH,求证EF平行AC平行GH且.

证明:由于AC平行于EFGH且四点共面,推出AC//FHAC//EG推出FH//EGEF并不平行于AC

如图,点E、F、G、H分别是正方形ABCD各边的中点,四边形EFGH是什么四边形

四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以菱形

如图,在四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.

做BD的辅助线连接,有题目可以得出,证明EFGH为平行四边形,只要证明四边形的两边是平行的就行了.\x0d在三角形ABD中,E,H分别为AB,AD,的中点,有三角形中点线证明可得,EH是平行于BD的,

已知:如图,顺次连接矩形ABCD各点中点得到四边形EFGH,求证:四边形EFGH是菱形.

连结AC,由E、F为中点可EF为中位线,则EF=1/2AC,同理GH=1/2AC,FG=1/2BD,EH=1/2BD;由矩形ABCD可知对角线相等,即AC=BD,从而得到EF=GH=FG=EH,所以四

如图,点E,F,G,H分别是任意四边形ABCD中AD,BD,BC,CA的中点,求证,四边形EFGH是平行四边形

证明:因为点E,FM,G.H分别是AD,BD,BC,AC的中点所以EF,FG,GH,EH分别是三角形ABD,三角形BDC,三角形ABC,三角形ADC的中位线所以EF平行ABFG平行DCGH平行ABEH

若点E,F,G,H分别是四边形ABCD的各边的中点,则四边形EFGH是______形.

若点E,F,G,H分别是四边形ABCD的各边的中点,则四边形EFGH是平行四边形形EFGH分别为菱形,矩形,正方形,菱形.

如图,四边形ABCD的对角线AC,BD相交于点O,E,F,G,H分别是OA,OB,OC,OD的中点,四边形EFGH是平行

如果ABCD是平行四边形的话,EFGH就是平行四边形.因为EF,FG,GH,HE分别是大四边形被对角线划分出来的四个三角形的中线,必与底线平行.总之大的是什么形状,小的就什么形状.不过缩小版而已.

已知:如图,矩形ABCD的外角平分线分别交于点EFGH.求证:四边形EFGH是正方形

证明:∵矩形的ABCD的外角都是直角,HE,EF都是外角平分线,∴∠BAE=∠ABE=45°.∴∠E=90°.同理,∠F=∠G=90°.∴四边形EFGH为矩形.∵AD=BC,∠HAD=∠HDA=∠FB

平行四边形各角的平分线分别相交点EFGH,求证:四边形EFGH是矩形

证:画图,因为ABCD是平行四边形,所以角BAD+角ADC=180度.又因为角DAH=1/2角BAD,角ADH=1/2角ADC,所以角DAH+角ADH==90度.所以角AHD=90度.同理可证得EFG

如图,已知E,F,G,H分别是四边形ABCD的各点的中点,则四边形EFGH是什么四边形?

如果是矩形,则变成菱形;如果是菱形,则变成长方形;如果是正方形,则还是正方形

已知EFGH分别是空间四边形ABCD四条边AB,BC,CD,DA的中点,求证四边形EFGH是平行四边形

连接AD、CB  ∵EF是三角形ABC的中位线,GH是三角形BCD的中位线∴EF=1/2BC,EF‖BC  GH=1/2BC,GH‖BC∴GH=EF,且GH‖E

如图,点E,F,G,H分别是正方形ABCD各边的中点,四边形EFGH是什么四边形?

答:四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以

点E,F,G,H分别是正方形ABCD各边的中点,四边形EFGH是什么四边形?

正方形很简单因为本来大正方形四条边微都相等然后那四个点又都是中点所以那四条边都被平分还是相等所以中间是个正方形(你自己画个准确的图一看就知道了)!用全等证明~

点E.F.G.H分别是正方形ABCD各边的中点,四边形EFGH是什么四边形?

还是正方形;连接大正方形的两条对角线,由中位线定理知:四边形EFGH是平行四边形;由正方形对角线垂直且相等得平行四边形EFGH的邻边垂直且相等;所以平行四边形EFGH是正方形;

点E,F,G,H分别是四边形ABCD的各边中点.求证;四边形EFGH是平行四边形

连接AC,由三角形的中位线可只EF平行且等于GH(或者FG平行且等于HE),也就是都等于AC/2,所以四边形EFGH是平行四边形.

已知efgh分别是四边形abcd的四条边的中点顺次连接各点

1平行四边形根据中位线定理,EF平行AC,GH平行AC且都等于AC一半,所以EF和GH平行且相等2垂直由于EF平行AC,EH平行BD,若AC垂直BD,则EF垂直EH,有一个角是直角的平行四边形是矩形3

已知:四边形ABCD是空间四边形,其各边四点分别是EFGH.①求证:EFGH四点共面

因为E,H分别是AB,AD的中点所以EH//BD同理,因为F,G分别是BC,CD的中点所以FG//BD因为EH//BD,FG//BD所以EH//FG所以E,F,G,H共面

已知:四边形ABCD各角的平分线分别相交于点E,F,G,H求证:四边形EFGH是矩形.

证明:因为四边形ABCD是平行四边形所以,AB//CD所以,角BAD+角ADC=180因为AF平分角BAD,DF平分角ADC所以,角FAD=1/2角BAD,角ADF=1/2角ADC所以,角FAD+角F