点ef分别在正方形abcd

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:54:51
点ef分别在正方形abcd
如图一在正方形ABCD中,点EF分别在边BC CD上 AE BF 交于点O∠AOF=90°求证BE=CF

只需要证明△ABE≡△BCF这里证明全等的方法选用ASA,即角边角的方法证明根据角边角判定定理,需要证明两个三角形的两个角和这两个角所夹得边对应相等就可以了在此例中,即是证明∠EAB=∠FBC,AB=

在正方形ABCD中,EF分别为BC,CD上的点 且BE+DF=EF 求证 角EAF=45度

提示:延长CB到H,使得BH=DF,连AH.证三角形AEH全等于三角形AFE.

在 边长为5的正方形ABCD中,点E,F分别是BC,DC边上的点,且AE垂直EF,BE=2(1)延长EF交正方形外角平分

AE=EP证明:在AB上截取AF=CE,连接EF,在BE=BF,∠BFE=45°∵∠AEP=90°∴∠CEP+∠AEB=∠BAE+∠AEB=90°∴∠CEP=∠AEB∵∠AFE=135°,PCE=13

已知:如图,在正方形ABCD中,E、F分别是BC、DC边上的点,且AE⊥EF于点E.

很高兴为您解答!分析:(1)在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP;(2)先证△DAM≌△ABE,进而可得四边形DMEP是平行四边形

如图,在边长为5的正方形ABCD中,点E,F分别是BC,DC边上的点,且AE⊥EF,BE=2.

,在AB上取BM=BE,连接EM,∵ABCD为正方形,∴AB=BC,∵BE=BM,∴AM=EC,∵∠1=∠2,∠AME=∠ECP=135°,∴△AME≌△ECP,∴AE=EP;(3)存在.顺次连接DM

已知:如图,在正方形ABCD中,E、F分别是BC、DC边上的点,且AE垂直于EF于点E

(1)AE=EP.证明:设AB=X,BE=Y,则EC=X-Y.作PG垂直BC的延长线于G,易知PG=CG,设∠BAE+∠AEB=90°=∠AEB+∠PEC,则:∠BAE=∠PEC;又∠B=∠PGE=9

如图,在正方形ABCD中,点E,F分别在BC,CD上移动,但A到EF的距离AH始终保持与AB长相等,

证明:(1)∠EAF的大小没有变化.根据题意,知AB=AH,∠B=90°,又∵AH⊥EF,∴∠AHE=90°∵AE=AE,∴Rt△BAE≌Rt△HAE,∴∠BAE=∠HAE,同理,△HAF≌△DAF,

已知,如图,在正方形ABCD中,点E,F分别在BC和CD上,AE=EF,求BE=DF

明确告诉你,这是个错题.证明很简单:假设E在BC中点,那么F与D重合,此时有AE=EF,但BE不等于DF.

如图,正方形ABCD中,点E,F分别在AD,BC,上,点G,H分别在AB,CD上,且EF垂直GH求EF/HG

过H作HN垂直AB于N,过E作EM垂直BC于M,EF交MN于O,四边形EDCM和CHNB是矩形,角EMF=角HNG=90度,EM=CD=BC=HN,EM垂直HN,角FEM=90度角EOH=角GHN,三

SOS!几何题~在正方形ABCD中,点E,F分别是BC,DC边上的点,且AE垂直EF,延长EF交正方形外角平分线CP于点

1.AP=PE理由如下:在AB上截取线段BG,使BG=BE∵四边形ABCD是正方形∴AB=BC∠B=∠DCB=90°∵PC平分∠DCB的外角∴∠DCP=45°∴∠ECP=135°∵BG=BE∠B=90

在正方形ABCD中,点E,F分别在边BC,CD上,且角BAE+角DAF=45度.求证 EF=BE+DF

将三角形ABE绕A点旋转使B点与D点重合,设旋转后的E点为G点,三角形GAF与三角形EAF全等EF=GF=GD+DF=BE+DF

在正方形ABCD-A1B1C1D1中,E、F分别是A1D,AC上的点,且EF⊥A1D,EF⊥AC,求证EF平行于BD1

连接CB1,AB1CB1//DA1,EF⊥A1D,那么EF⊥CB1,EF⊥AC所以EF⊥ACB1很容易证DD1B⊥AC,则AC⊥BD1,同理AB1⊥BD1,所以BD1⊥ACB1所以EF//BD1

已知,如图,在正方形ABCD中,点E,F分别在AB上和AD的延长线上,且BE=DF,连接EF,G为EF

(1)证明:∵BE=DF,BC=CD,∠EBC=∠CDF,∴△CEB≌△CFD,∴CE=CF;(2)证明连接AG,CG在Rt△EAF中,∵G是斜边EF的中点,∴AG=GE=GF,又∵△EBC≌△FDC

如图在正方形abcd中,点e,f分别为dc,bc边上的动点,满足角eaf=45度,求证EF=DE+BF

这个题目辅助线不是画在中间,你看它右上角那个三角形,把它补在图形左边,也就是AB移动到AD的位置,这样可以求证三角形AEF和(那两个小三角形拼成的三角形)全等,边角边

EF分别是正方形ABCD的边AB和CD的中点,EF,BD相交于点O,以EF为棱将正方形折成直二面角

题目不全啊再问:EF分别是正方形ABCD的边AB和CD的中点,EF,BD相交于点O,,以EF为棱将正方形折成直二面角,求角BOD的度数再问:EF分别是正方形ABCD的边AB和CD的中点,EF,BD相交

已知:如图,正方形ABCD中,点E在BC的延长线上,AE分别交DC,BD于F,G,点H为EF的中点.

证明:(1)∵ABCD为正方形,∴AD=DC,∠ADC=90°,∠ADB=∠CDB=45°,又DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCG;(2)∵ABCD为正方形,∴AD∥BE,∴∠DAG

已知正方形ABCD的边长为1,线段EF//平面ABCD,点E,F在平面ABCD内正投影分别是A,B,且EF到平面ABCD

(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2

在正方形ABCD中,EF分别是CD,AD的中点,BE与CF相交于点P,若AP=18,求正方形ABCD的面积

图你自己画吧,由P向AB,BC,CD,AD作垂线,垂点分别为S,R,Q,T.由定理知,PQ/BC=EQ/EC,PQ/FD=CQ/CD,又因为CD=BC=2FD2EC,EQ=EC-CQ,化简可得4EC=

如图,正方形ABCD中,ENFM分别是各边上的点,EF垂直MN,求证MN=EF

证明:设点E在BC上,点N在CD上,点F在DA上,点M在AB上.又设EF与MN的交点为P过点F作FS⊥BC,交BC于点S;过点N作NT⊥AB,交AB于点T.因为∠B=90°,∠MPE=90°所以∠BM