点M为三角形ABC边BC的中点,∠EMF=90
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:16:25
证明的是小于等于4分之5吧因为,∠1=∠2=∠3则,△ABC∽△EBD∽△ADC相似比=周长的比=m:m1:m2设,AC/BC=k则,m2/m=AC/BC=DC/AC=k解得,DC=kAC又,DC=B
解题思路:(1)由题意知∠BAE=∠BDM,∠ABE=∠DBM故有△ABE∽△DBM⇒AE:DM=AB:BD,而∠ABC=45°⇒AB=根号2倍BD,则有AE=根号2倍MD;(2)由于cos60°=1
1、∵点M为AB的中点,CM=1/2AB∴AM=BE=1/2AB=CM∵AM=CM∴∠A=∠MCA∵BM=CM∴∠B=∠MCB∴∠A+∠B=∠MCA+∠MCB∵∠ACB=∠MCA+∠MCB∴∠A+∠B
直角三角形BFC的斜边中线等于斜边的一半,那么MF=1/2BC所以ME=MF懂了没,不懂我再教你.
因为直角三角形斜边上的中线等于斜边的一半所以在Rt△ABE中DE=AB/2在Rt△ABF中DF=AB/2所以DE=DF,所以k=1再问:已知:在三角形ABChong,CB=CA,点D是AB的中线,点M
证明:如图:1、长AC,BG'交于N点,由于:BM=CM,GM=G'M所以四边形BG'CG是平行四边形.有:BH//DC、CL//BN因为:AL=LB,CL//BN所以:AC=
设A(x1,y1),B(x2,y2),c(x3,y3)重心p=((x1+x2+x3)/3,(y1+y2+y3)/3)M(3,2)=((x1+x2)/2,(y1+y2)/2)=((4+x2)/2,(-1
“O为圆心的半圆叫AC于F”“O”点在哪?你这是什么题啊?
垂直.连接OAOA1,作C1H垂直AA1延长线于H则有:角AOA1和COC1=a所以:角AA1O=角CC1O又因为A1O垂直B1C1即:角A1OC1=90°根据四边形内角和360所以:角A1HC1=9
如图:1.向量运算的平行四边形法则 2.重心的性质, 1:2可得答案 A
再问:为什么AD垂直于BC,BE垂直于AC,ME就=2分之1的AB?MD=2分之1AB?再答:△ADB和△ABE是直角三角形,M为AB边的中点,直角三角形斜边上的中线等于斜边的一半,这是定理啊。
你这道题无解,三角形的一个基本原理是两边之和大于第三边,你这个3+3=6了,所以不可能是三角形.抄错题了吧
AB=AC=3,BC=6?3+3=6题目有问题:错题
延长BD,交AC于点N∵AD⊥BN,AD平分∠BAN,AD=AD∴△ABD≌△AND∴AB=AN,BD=DN∵M是BC的中点∴DM是△BCN的中位线∴DM=1/2CN=1/2(AC-AN)=1/2(A
概念不清呀,过程省略向量2字:AM=2AN=2(xAB+yAC),而:MB=AB-AM,CM=AM-ACCM与MB是同向向量,故满足关系:MB=kCM,即:AB-AM=k(AM-AC)即:(k+1)A
延长BA到B',使得AB=AB'延长CA到C',使得AC=AC'连接B'C,B'C'.在B'C'上取中点M',在AB'上取P'使得AP=AP'连接AM',M'P',P'Q可以知道PQ=P'Q,PM=P
答案MN=12/5则AM*MC*1/2=AC*MN*1/2即4*3*1/2=5*MN*1/2MN=12/5
证明:∵BM⊥aCN⊥a∴BM∥CN∴∠MBP=∠ECP∵点P为BC的中点∴BP=CP∵∠BPM=∠GPE∴△BPM≌△CPE
向量BC=向量AC-向量AB=b-a所以向量BM=1/2向量BC=1/2(b-a)向量AM=向量AB+向量BM=a+1/2(b-a)=1/2a+1/2