点o是三角形abc内任意一点,求证角boc等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:06:04
点o是三角形abc内任意一点,求证角boc等于
如图,O为三角形ABC内任意一点,求证:OA+OB大于AC+BC急!

写反了吧AC+BC>OA+OB证明:延长BO交AC于D∵BC+CD>BD,AD+OD>OA∴BC+CD+AD+OD>BD+OA∴BC+AC+OD>OD+OB+OA∴AC+BC>OA+OB数学辅导团解答

如图所示,点P是三角形ABC内的任意一点,求证:AB+AC>BP+PC

过P作PM∥AC交AB于M,过P作PN∥AB交AC于N,有AM=PN,AN=PM.△PBM中,PM+BM>PB(1)△PCN中,PN+CN>PC(2)(1)+(2)得:PM+BM+PN+CN>PB+P

点P是三角形ABC内任意一点,试说明PB+PC

PB再问:有没有更详细的再答:这个没法详细证明,只要点P是在三角形内的任意一点,它始终是比三角形的两条边短啊再答:相反的,如果点P是在三角形外的任意一点,就比那两条边长再问:那这么说这是公式了再问:太

已知:三角形ABC,O是三角形ABC内任意一点.求证:AB+AC大于OB+OC

证明AB+BC>OB+OC证:延长BO交AC于D因为AB+AD>BD=OB+OD,即AB+AD>OB+OD,又因为OD+DC>OC上述两不等式两边相加得:所以AB+AD+OD+DC>OC+OB+OD,

如图,点E是三角形ABC内任意一点,试比较BE+CE与AB+AC的大小

在△ABF中,AB+AF>BE+EF ;在△EFC中,EF+FC>EC 将两个不等式左右各自相加得:AB+AF+EF+FC>BE+EF+EC 同时两边去

三角形ABC,O点是三角形ABC内一点.连结OB,OC证明:AB+AC>OC+OB

证明:延长BO,交AC于点D由“三角形两边之差小于第三边”,可得BD-AB<ADOC-OD<CD∵BD=OB+OD∴OB+OD-AB<ADOC-OD<CD以上两式相加,得OB-AB+OC<AD+CD∴

已知三角形ABC,点P是平面ABC外一点,点o是点p在平面ABC上的射影,且点o在三角形ABC内

一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心

已知:O为三角形ABC内任意一点,

分析:构造出两个三角形,使之包含结论中的4条线段,可利用“三角形两边之和大于第三边”解决问题.延长BO交AC于D,则在△ABD中,AB+AD>OB+OD.在△ODC中,OD+DC>OC.所以AB+AD

如图 已知O是 三角形ABC 内任意一点 求证 OB+OC

有图吗?发一个,再问:忘了..再答:证明ABBC>OBOC证:延长BO交AC于D因为ABAD>BD=OBOD,即ABAD>OBOD,又因为ODDC>OC上述两不等式两边相加得:所以ABADODDC>O

已知o为三角形abc内任意一点,求证

1.bo+oc+bc<ab+ac+bc则bo+oc<ab+ac2.oa+ob大于aboa+oc大于acob+oc大于bc则三式加起来就是OA+OB+OC>½(AB+BC+AC)再问:麻烦你,

如图,O为三角形ABC内任意一点,求证:OA+OB<AC+BC

证明:延长AO交BC于D∵AC+CD>AD,BD+OD>OB∴AC+CD+BD+OD>AD+OB∵CD+BD=BC,AD=OA+OD∴AC+BC+OD>OA+OD+OB∴AC+BC>OA+OB数学辅导

已知点O是三角形ABC内任意一点,连接OA并延长到E,使得AE=OA 以OB,OC,为邻边作平行四边

1,连接AH.OBFC为平行四边形,点H为OF、BC中点.AB=AC 点H为BC中点  AH⊥BCAH=√3BC/2OA/OE=1/2OH/OF=1/2OA/OE=OH/OFAH//EFEF⊥BCAH

已知如图o为三角形ABC内任意一点求证

△∠∵∴辅助线,连接AO并延长交BC于D;则∠BOC=∠BOD+∠COD,同样,∠BAC=∠BAD+∠CAD根据三角形外角和定理,∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2∴∠BOC=∠BAD

O为三角形ABC内任意一点,求证:OA+OB+OC

证明:延长AO交BC于D,在△OBD和△ACD中,有OB

如图,点O是三角形ABC内的任意一点,求证∠BOC=∠A+∠ABD+∠ACO

因为∠BDC是三角形ABD的外角所以∠BDC=∠A+∠ABD因为∠BOC是三角形ODC的外角所以∠BOC=∠BDC+∠ACO=∠A+∠ABD+∠ACO再问:图呢再答:囧,自己画一个啊,很简单的再问:你

如图,△ABC是等边三角形,O为△ABC内的任意一点,OE‖AB,OF‖AC,分别交BC于点E、F.三角形OEF是等边三

是,因为△ABC是等边三角形,所以∠B=∠C=60°,因为OE‖AB,OF‖AC,所以∠OEF=∠B=60°,∠OFE=∠C=60°,所以△OEF是等边三角形

怎么证明 任意三角形ABC中,点D是三角形内任意一点,求证AB+AC大于BD+CD?

延长BD交AC于M   因为AB+AM>BE       BM=BD+DM &nbs

点0是三角形ABC所在平面内的一点,满足向量OA*=OB*OC=OC*OA,求证:点o是三角形ABC的外心

向量OA*OB=OB*OC=OC*OAOA*OB=OB*OCOB(OA-OC)=0所以向量OB*CA=0所以向量OB垂直于向量CA同理:向量OA垂直于向量BC向量OC垂直于向量AB所以:点o是三角形A

已知O是三角形ABC内一点,求证.

(1)∵O是△ABC内一点,由∠BOC+∠OBC+∠OVB=180°,①又∠A+∠B+∠C=180°,②①-②得∠BOC=∠A+∠ABO+∠ACO,∴∠BOC>∠A.(2)过O作OM‖AC交AB于M,