点o是平行四边形的对角线bd的中点,ef分别是bc和ad的点且ae平行于fc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:43:02
1.△ACE为等边△,AE=EC又AO=OC,所以EO垂直AC,平行四边形ABCD对角线相互垂直,为菱形2.∠AED=1/2ACE=30°,所以∠EAD=15°,所以∠ADO=∠AED+∠EAD=45
1)∵是平行四边形∴AO=CO∵三角形ACE是等边三角形∴AE=CE∴OE垂直平分AC∴AD=CD则四边形ABCD是菱形(2)∵三角形ACE是等边三角形∴∠AED=1/2∠AEC=30°∴∠EAD=1
1)四边形ABCD是菱形,理由,因为在平行四边形ABCD中,AO=CO,所以EO是边AC的中线,因为△ACE是等边三角形所以EO⊥AC所以BE是AC的垂直平分线所以AD=CD(垂直平分线上的点到线段两
因为平行四边形ABCD所以AO=co,do=bo因为,点E,F分别是OA,OC的中点所以AE=EO,OF=FC即EO=FO因为DO=BO,EO=FO所以四边形DEBF是平行四边形
∵BD=2ABO是对角线的交点,∴⊿ABO是等腰三角形,∵BE是底边上的中线∴BE⊥AC∴EF是直角⊿BCE斜边BC上的中线∴EF=BF
1、本题结论为四边形EBFD是平行四边形,利用对角线互相平分证明(因原平四对角线互相平分,再有中点得OE=OF)2、是,证法与此1类似,利用对角线互相平分证明3、是,先可证三角形BOF全等DOE得OE
∵四边形ABCD是平行四边形,∴OA=OC,OD=OB,△AOB边OB上的高和△DOA的边OD上的高相等,且OB=OD,∴S△AOB=S△AOD,同理:S△AOD=S△DOC,S△DOC=S△BCO,
∵△ACE是等边三角形,OE⊥AC,∴∠AEO=12∠AEC=30°,∵∠AED=2∠EAD,∴∠EAD=15°∴∠ADB=45°,∵四边形ABCD是菱形,∴AD=DC,BD⊥AC,∴∠CDB=∠AD
因为点E,F,G,H分别是AO,BO,CO,DO的中线所以EF=(1/2)ABGH=(1/2)CD,所以EF=GH同理FG=EH所以四边形EFGH是平行四边形(两对边相等)
∵ABCD是平行四边形∴OB=OD=1/2BD=6BC+CD=36÷2=18∵E是CD的中点∴OE是△BCD的中位线∴OE=1/2BC∵DE=1/2CD∴OE+DE=1/2CD+1/2BC=1/2(B
1、因为四边形ABCD为平行四边形所以A0=0C所以OE是△ACE的中垂线因此AD=DC(中垂线上点到线段两段距离相等)所以为菱形2、因为角AEC=60°所以角AED=30°角EAD=15°所以角AD
由题意得:AB=AO=OC=CD,连接OP,则OP为AB中位线,所以:OP∥AB,OP=(1/2)AB=(1/2)OC=OF;显然三角形ABO与三角形COD为等腰三角形,所以∠POD=∠ABO=∠AO
由平行四边形ABCD,三角形ABC是等边三角形得三角形ACD是等边三角形∵三角形ABC是等边三角形,三角形ACD是等边三角形∴∠BAD=60°+60°=120°
∵三角形aob是等边三角∴∠aob=60°=∠bao,ao=bo∵平行四边形两条对角线互相平分∴ao=do∵∠aod=180°-60°=120°∴∠dao=30°∴∠bad=∠aob+∠dao=90°
设BD的长为x,则AC的长为2x.AOB和BOC的周长就是ABCD周长的一半再加上AC和BD的长所以2X+X=72解得x=24所以BD的长为24,AC的长为48
OB+OC+BC=59AD=BC=28OB+OC=31BD-AC=41/2BD-1/2AC=OB-AC=(1/2)*4OB+OC=31OB-OC=2.OB=33/2OC=14.5AC=2OC=29BD
∵ABCD是平行四边形∴OB=OD=1/2BD=6BC+CD=36÷2=18∵E是CD的中点∴OE是△BCD的中位线∴OE=1/2BC∵DE=1/2CD∴OE+DE=1/2CD+1/2BC=1/2(B
证明:(1)∵四边形ABCD是平行四边形,∴AO=CO.又∵△ACE是等边三角形,∴EO⊥AC(三线合一),即AC⊥BD,∴四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形).(2)∵四边形AB
DEBF为菱形EO垂直于BD,所以EOD=90度,沿DE折叠A落在O处,所以A与O关于DE对称,所以DAB=EOD=90度DO=DA=1/2DBAB/BC=根3/1=根3
证明:连接AE,如图.∵四边形OCDE是平行四边形,∴DE∥OC,DE=OC∵O是平行四边形ABCD的对角线AC与BD的交点,∴AO=OC.∴DE∥OA,DE=OA∴四边形ODEA是平行四边形,∴OE