点p为双曲线x2 a2-y2 b2=1右支上的一点,其左右焦点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:06:25
∵|AF1|-|AF2|=2a,|BF1|-|BF2|=2a,又|AF2|+|BF2|=|AB|=m,∴|AF1|+|BF1|=4a+m,∴△ABF1的周长=|AF1|+|BF1|+|AB|=4a+2
过焦点F1(-c,0)的直线L的方程为:y=33(x+c),直线L交双曲线右支于点P,且y轴平分线F1P,则交y轴于点Q(0,33c).设点P的坐标为(x,y),∴x+c=2c,y=23c3P点坐标(
设PF1与圆相切于点M,过F2做F2H垂直于PF1于H,则H为PF1的中点,∵|PF2|=|F1F2|,∴△PF1F2为等腰三角形,∴|F1M| =14| PF1|,∵直角三角形F
由题意得F1(-c,0),F2(c,0),则由题意得PO=PF1+PF22,∴PO2=10 a2=PF12+ P F22+2PF1•PF24=(|PF1|−|PF2|)2
(1)根据双曲线的定义,得|PF1|-|PF2|=2a∵|PF1|=3|PF2|,∴|PF1|=3a,|PF2|=a设F1(-c,0),F2(c,0),P(x0,y0),双曲线x2a2−y2b2=1的
(1)依题意ba=295a2−165b2=1…(3分) 解得 a=1b=2.…(5分)所以双曲线的方程为x2−y24=1
(Ⅰ)不妨设P为双曲线上右支一点∵PF1•PF2=0,∴PF1⊥PF2∴|PF1|2+|PF2|2=4c2∵|PF1|=2|PF2|,|
因为抛物线y2=8x的准线方程为x=-2,则由题意知,点F(-2,0)是双曲线的左焦点,所以a2+b2=c2=4,又双曲线的一条渐近线方程是bx-ay=0,所以点F到双曲线的渐近线的距离d=2ba2+
(1)∵抛物线y2=2px(p>0)经过点M(2,4),∴42=2p×2,解得p=4,∴抛物线的标准方程为y2=8x.…(3分)∴抛物线的焦点为(2,0),∴双曲线的焦点为F1(-2,0),F2(2,
设双曲线的由焦点F(c,0),左焦点F′(-c,0),由双曲线的定义可得PF′-PF=2a, PF′PF=e,∴ePF-PF=2a,∴PF=2ae−1=2a2c−a≥c-a,∴ca≤2+1.
设P1(x1,y1),P2(x2,y2),P(x,y),则x1+x2=2x,y1+y2=2y∵x12a2−y12b2=1,x22a2−y22b2=1两式相减可得:1a2(x1-x2)×2x-1b2(y
双曲线C:x2a2-y2b2=1的渐近线方程为y=±bax∵双曲线C:x2a2-y2b2=1的焦距为10,点P (2,1)在C 的渐近线上∴2c=10,a=2b∵c2=a2+b2∴
不妨设P在左支上,|F1P|=x,则|F2P|=2a+x∵OP为三角形F1F2P的中线,∴根据三角形中线定理可知x2+(2a+x)2=2(c2+7a2)整理得x(x+2a)=c2+5a2由余弦定理可知
∵抛物线y2=8x的焦点,∴F(2,0),准线为x=2,∵|PF|=5,∴P(3,y),∴y2=8×3=24,∴双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点F(2,0),∴9a2−24b
(1)∵双曲线在一,三象限的渐近线为y=bax,右焦点F(c,0)∴所求的直线l:y=−ab(x−c)由y=bax及y=−ab(x−c)联立解得P的坐标P:(a2c,abc)所以点P在直线x=a2c上
(1)∵双曲线C:x2a2−y2b2=1离心率为2,即e=ca=2,∴c=2a,∴b2=4a2-a2=3a2,(2分)∴设双曲线方程为x2a2−y23a2=1,∵双曲线过点P(2,3),∴2a2−33
假设|F1P|=xOP为三角形F1F2P的中线,根据三角形中线定理可知x2+(2a+x)2=2(c2+7a2)整理得x(x+2a)=c2+5a2由余弦定理可知x2+(2a+x)2-x(2a+x)=4c
由双曲线的定义与几何性质以及正弦定理得,e=ca=sin∠PF2F1sin∠PF1F2=|PF1||PF2|=2a+|PF2||PF2|=1+2a|PF2|;∵|PF2|>c-a,即e<1+2e−1,
∵双曲线x2a2−y2b2=1(a>0, b>0)的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P在第一 象限内且在l1上,∴F1(-c,0)F2(c,0)P(x,y),
∵抛物线y2=2px(p>0)焦点F恰好是双曲线x2a2-y2b2=1(a>0,b>0)的右焦点,∴c=p2,p=2c.∵双曲线过点(3a2p,b2p),∴9a4p2a2−b4p2b2=1,∴9a2p