点P是圆o外一点PA切圆o于点A,AB是圆O的直径连接OP过点B作BC∥OP
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:15:49
证明:1、∵PA、PB切圆O于A、B∴PA=PB∵DE切圆O于C∴AD=CD,BE=CE∴DE=AD+BE∴△ADE的周长=PD+DE+PE=PD+AD+BE+PE=PA+PB=2PA∴△ADE的周长
辅助线已作如图先证三角形ABP相似于三角形CAP:公共角P角ABP=角CAB+角ACB角CAP=角OAP+角CAO且三角形OAC等腰,从而角ACB=角CAO因为角CAB=角OAP=90°所以三角形AB
(1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等; OC=OA, OD=OD;三角
∠P=70°,所以∠AOB=110度,DA,DC,EB,EC分别是圆的切线,根据切线长定理,∠DOE=1/2∠AOB=55度DC=DA,EC=EB,所以周长为PD+PE+DE=PA+PB=2PA=10
(1)连接OB、OP△POA和△POB中PA=PB,PO=PO,AO=BO(都是半径)所以△POA≌△POB,∠PAO=∠PBO因为PA为切线,所以∠PAO=90因此,∠POB=90.PB为圆切线(2
连结EO、CO.∵PC切⊙O于C,∴∠PCO=90°,∴∠OCE=∠PCO-∠PCD=90°-∠PCD.∵PC=PD,∴∠PCD=∠PDC,∴∠OCE=90°-∠PDC.显然有:∠PDC=∠ODE,∴
题目应改为"连接"CD"证明:连接OE,OC易证OE垂直AB,弧AE=弧EB,得∠ABE=∠BCE
1. 直线PC与圆O相切 证明:如你图,连接OC;  
连接AC,OC∵AB为⊙O直径∴AC⊥BC(严谨一些的话,要先∠ACB=90°再垂直)∵BC//OP∴OP⊥AC.(其实这里要写上∵BC//OP,∠BCA=90°,导出内错角也为90°,再OP⊥AC)
*引理:切线长定理:过定圆外一点向定圆引两条切线,则这两条切线长相等.*引理的证明:运用三角形全等证明,证法略.根据切线长定理,我们有:DC=DA,DE=BE;那么,由以下两组三角形全等:三角形OAD
连接PO平行四边形ABCD,对角线交点平分对角线,所以BO=DO,AO=CO所以,在Rt△DPB中,PO是斜边的中线,所以BD=2PO 在Rt△APC中,PO是斜边的中线,所以AC=2PO所以,A
连接OA,OC,OE.∵A和E均为切点.∴∠OAC=∠OEC=90°;又OA=OE,OC=OC.∴Rt⊿OAC≌Rt⊿OEC(HL),AC=EC.同理可证:BD=ED,PA=PB.∴PC+CD+PD=
延长PO交圆0于点E,连接AE因为EC是圆O的直径所以角EAC=90度因为AD垂直EC所以角ADC=90度因为角ACD=角ECA所以角DAC=角EAO因为角DAC=角CAP所以角EAO=角CAP所以角
证明:∵四边形ABCD为矩形.∴AC=BD;AO=OC;BO=OD.又∵PA⊥PC.∴PO=AC/2.(直角三角形斜边的中线等斜边的一半)∴PO=BD/2.(等量代换)∴∠BPD=90°,即PB⊥PD
延长PO交圆于D∴BD是圆直径∴PD=PB+BD=1+2OB∵PA是圆O的切线∴切割线定理PA²=PB×PD2²=(1+2OB)×1OB=3/2
因为PA,PB为切线所以PA=PB因为BD⊥PA于点D,AE⊥PB于点E三角形ABP的面积可以表示为二分之一BD*AP或者二分之一AE*BP所以AE=BD因为BD⊥PA,AE⊥PBAB=AB所以三角形
圆心为O连结OP,OB.可得因为是圆的半径,所以OA=OB已知,PA=PB,且共用边OP.得出,三角OPA全等于,三角OPB,推出,角OBP是90度,推出PB是圆O的切线.
2连接OA,sin可看作对边3份,斜边5份,利用相似可把AC=8牵进来.AP可得,半径OA亦可得,直径不用再说了吧3不知道这一问和第二问有没有联系?S△ACD等于底边AC和高之积一半面积最大,高自然就
设半径为r,角P=45°,sqrt(n)指对n开根号,/指除号,乘号省略=>PA=OA=r,=>OP=sqrt(2)r,OB=OC=r,1)PBPB=OP-OB=[sqrt(2)-1]r,PA=[sq