点P是角ABC内一点,角ABC=80度,角1=角2,求角P
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:05:12
过P作PM∥AC交AB于M,过P作PN∥AB交AC于N,有AM=PN,AN=PM.△PBM中,PM+BM>PB(1)△PCN中,PN+CN>PC(2)(1)+(2)得:PM+BM+PN+CN>PB+P
证明:把⊿APB绕点A旋转至⊿ADC的位置(如图).则∠ADC=∠APB=∠APC;DC=PB,AD=AP.∴∠ADP=∠APD.∴∠CDP=∠CPD(等式性质)则PC=DC=PB.
PB再问:有没有更详细的再答:这个没法详细证明,只要点P是在三角形内的任意一点,它始终是比三角形的两条边短啊再答:相反的,如果点P是在三角形外的任意一点,就比那两条边长再问:那这么说这是公式了再问:太
角A+∠ABC+∠ACB=180∠P+∠PBC+∠PCB=180又∠ABC>∠PBC∠ACB>∠PCB所以∠A<∠P
∵PA=PB,∴P在AB的垂直平分线上,同理P在AC,BC的垂直平分线上.∴点P是△ABC三边垂直平分线的交点.故选D.
连接AP延长交BC于D你知道 角BPE=角BAP+角ABP 角CPE=角PAC+角ACP &nbs
两边之差小于第三边
利用旋转,如图所示:
一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心
证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.
证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC所
因为∠ABP=120,所以∠ABP+∠BAP=60,又角ABC=60°,所以∠ABP+∠CBP=60,所以∠CBP=∠BAP,又∠APB=∠APC=120所以△ABP∽△BCP所以AP/BP=BP/C
把△ABP以A点为原点旋转,使AB与AC重合.P到P'处.△APP'为正△PP'=2,∠AP'P=60°△PCP'为RT△,∠PP'C=60°∠APB=120°
延长BP交AC于点E,在△BAE中,AB+AE>BE,即AB+AE>BP+PE ①在△PCE中,CE+PE>PC,②①+②,得,AB+AE+CE+PE>BE+BP+P
一样的题目,参考一下:点P是等边三角形ABC内一点,且PA=2,PB=2倍根号3,PC=4以A点为轴心,把三角形ABC顺时针旋转60度.C点就与B点重合,P点到了P1点.AP1=AP=2,BP1=CP
解题思路:本题主要考察了三角形外角和内角的关系的相关知识点。解题过程:
你这个结果是不可能的(是不是题目抄错了,应该是:角BPC=角ABP+角ACP+角A).如图,在△BPC中,角BPC=180°-(角PBC+角PCB)在△ABC中,角B +&nbs
连接AP并延长,交BC于点E∵∠BPE>∠BAE,∠CPE>∠CAP(三角形的外角大于和他不相邻的内角)∴∠BPE+∠CPE>∠BAP+∠CAP即∠BPC>∠BAC
BPC>BAC证明:延长BP交AC于D角BDC是三角形BAD的外角,则BDC〉BAC角BPC是三角形PDC的外角,则BPC〉BDC因此BPC〉BAC