Hf(P0)为正定矩阵时,f在P0处取极小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:16:04
Hf(P0)为正定矩阵时,f在P0处取极小值
证明::正交正定矩阵必为单位矩阵!

由定义,正交正定矩阵a,a*a'=a'*a=E;另外显然有a*E=E*a=E;比较二式,由于ab=ba=E中如果a、b正定,对正定的a,有b唯一,(正定的b,有a唯一),所以b=E,同理证得a=E;所

线性代数二次型矩阵.二次型f=xTAx的矩阵A所有对角元为正是f为正定的什么条件?

必要条件再问:f正定推不出A对角元为正;A对角元为正→f正定?那么:f正定为什么推不出A对角元为正呢?再答:f正定,一定有A的对角元为正!εi'Aεi=aii>0.反之不对再问:哦哦,写错了..1】f

怎样证明矩阵A为正定矩阵

正定矩阵的性质:设M是n阶实系数对称矩阵,如果对任何非零向量X=(x_1,...x_n),都有XMX′0,就称M正定(PositiveDefinite).因为A正定,因此,对任何非零向量X=(x_1,

对称矩阵a为正定矩阵,可以直接说a为实对称矩阵吗?对称矩阵,正定矩阵,实对称矩阵之间的关系是什么呢?

线性代数考虑的范围是实数正定的概念来源于二次型故一般说来正定是实对称矩阵(线性代数范围)(ABC)^T=C^TB^TA^T

线性代数证明题,若A,B均为正定矩阵,则A+B也是正定矩阵

证明:设x为非零列向量,则x^TAx>0,x^TBx>0所以x^T(A+B)x=x^TAx+x^TBx>0所以A+B正定

设A,B为正定矩阵,证明A+B为正定矩阵.

矩阵A是正定的等价于对于任意非零向量a,都有a'Aa>0;如果A、B都是正定的,那么对于任意非零向量a,都有a'Aa>0;a'Ba>0;显然对于任意非零向量a,就有a'(A+B)a>0;所以A+B也是

实对称矩阵A正定的充要条件是A的伴随矩阵为正定的,为什么?

必要性:adj(A)=A^{-1}/det(A)因此adj(A)正定充分性的反例:A=-1000-1000-1adj(A)=-A

矩阵A与B合同,B为正定矩阵,那么A是正定矩阵吗?

答案是肯定的.而且我认为问题没有那么复杂.B是正定矩阵,则存在可逆矩阵T,使得B=TT’.(右上角一撇代表转置,下同)A与B合同,则存在可逆矩阵P,使得A=PBP’.令Z=PT.显然Z为可逆矩阵,且A

证明:A,B均为N阶正定矩阵,则A+B也为正定矩阵

设X为任意列向量X'(A+B)X=X'AX+X'BX>0所以A+B为正定矩阵

设A,A-E都是n阶正定矩阵,证明E-A^-1为正定矩阵

正定的充分必要条件是所有特征值为正,故可如图证明.经济数学团队帮你解答,请及时采纳.谢谢!

设A为正定矩阵,则下列矩阵不一定为正定矩阵的是

正定矩阵的特征值ai>0A^T,A+E,A^-1,A-2E的特征值分别为ai,ai+1,1/ai,ai-2所以只有A-2E的特征值可能为负值所以A-2E不一定正定

大学矩阵问题,在清华的线性代数上看到的一题,若A,B均为正定矩阵,且AB=BA,证明AB为正定矩阵,本人只知道一种方法是

如果真要用主子式来证的话可以这样先做谱分解A=QDQ^T,令C=Q^TBQ然后Q^TABQ=DC,C也是正定的容易验证DC的顺序主子式都是正的(清华的辅导书上给的证明用了两次谱分解)

A,B是正定矩阵 AB=BA 证明AB也为正定矩阵

实对称矩阵A,B,分别存在实对称正定矩阵C,D,使得A=C^2,B=D^2则有C'(AB)C=C^-1(CCDD)C=CDDC=C'D'DC=(DC)'DC=E'EE=DC可逆,所以C'(AB)C正定

设A正定矩阵,证明A^m为正定矩阵.

1、当m为偶数时,A^m=[A^(m/2)]'[A^(m/2)]为正定阵2、当m为奇数时,A^m=A^((m-1/)2)AA^((m-1)/2)=[A^((m-1/)2)]'AA^((m-1)/2)=

设A为实对称矩阵,t为实数,证明:当t充分大时,矩阵tE+A为正定矩阵

设a1,...,an是A的特征值则t+a1,...,t+an是tE+A的特征值又A为实对称矩阵所以当t+a1,...,t+an都大于0时tE+A是正定矩阵所以当t充分大时,矩阵tE+A为正定矩阵

设A为n阶正定矩阵,x=(x1,x2,x3,.xn)T,证明:f(x)=| A x |为负定矩阵.| xT 0 |

题目中的“f(x)为负定矩阵”应为“f(x)为负定二次型”.详细解答见图片[参考文献]张小向,陈建龙,线性代数学习指导,科学出版社,2008.周建华,陈建龙,张小向,几何与代数,科学出版社,2009.

设M为逆,A为正定矩阵,证明M'AM是正定矩阵.

(M'AM)'=M'A'M=M'AM,故M'AM是对称的,对任意非零x,由M可逆,Mx也非零,再由A为正定矩阵得x'M'AMx=(Mx)'A(Mx)>0,故M'AM是正定矩阵.

设A为可逆矩阵,试征;ATA为正定矩阵

证明:对任一n维非零向量X因为A可逆,所以AX≠0.所以X^T(A^TA)X=(AX)^T(AX)>0[内积的非负性][这里用到A是实矩阵的条件]所以A^TA是正定的.