特征值之积等于行列式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:13:44
因为A的所有特征值的乘积等于A的行列式所以|A|=0时,A一定有特征值0.
A相似与对角矩阵!则上边的和式也相似与一个对角矩阵!两边取行列式就得到了!你试试!
把每个牲值回代就可得到特征向量.计算量太大.你自己算吧.再问:好难的说再答:计算量大,难度不大就是概念求解
(1)由|E-A|=0,得|A-E|=0,得λ1=1由|E+A|=0,得|A-(-E)|=0,得λ2=-1由|3E-2A|=0,得|A-3/2·E|=0,得λ3=3/2故A的特征值为:λ1=1,λ2=
求矩阵的特征值是令行列式|A-λE|=0得到了现在|A+E|=0就相当于λ=-1了
行列式是-2,因为矩阵A和它的若尔当标准型的行列式一样.它的若尔当标准型行列式就是1*-1*2=-2
设s是A的特征值,x是A对应于s的特征向量,则Ax=sx(E+A+A^2)x=x+Ax+A^2x=x+sx+Asx=x+sx+s^2x=(1+s+s^2)x所以1+s+s^2是E+A+A^2的特征值由
用哈密顿凯莱定理,特征多项式的常数项是方阵的行列式,再由伟达定理可知,特征值的积=特征多项式的常数项=方阵的行列式,还有不是所有的矩阵都可相似于对角矩阵的
设矩阵A的特征值为λ1,……λn,由于A相似于以λ1,……λn为对角元的对角矩阵(设其为B),所以|A|=|P^-1BP|=|P^-1||B||P|=|P|^-1|B||P|=|B|=λ1λ2……λn
行列式没有特征值,方阵才有特征值.方阵A的特征值指的是满足Ax=λx(x≠0)的数λ,其中x称为矩阵A的对应于特征值k的特征向量.求A的特征值的方法:解行列式|A-λE|=0,E是单位矩阵例如:A=1
由于|E-A|=0,|E+A|=0,|3E-2A|=0,故可知1,-1,3/2,均为A的特征值,由于A为3阶矩阵,故A最多有3个互不相同的特征值,因此A的特征值即为1,-1,3/2,由特征值和矩阵行列
这是个定理,教材中应该有证明A的特征多项式f(λ)=|A-λE|一方面从行列式的定义分析它的λ^n,λ^(n-1)的系数及常数项另一方面f(λ)=(λ1-λ)...(λn-λ)比较λ^n,λ^(n-1
列式A等于0,故0是A的特征值.所有特征值的和等于矩阵对角上所有元素的和.故1+0+a=0故最后一个特征值为-1
因为矩阵可以化成对角元素都是其特征值的对角矩阵,而行列式的值不变,对角矩阵的行列式就是对角元素相乘
|λE-A|=|λ-a11-a12...-a1n||-a21λ-a22.-a2n||.||-an1-an2.λ-ann|=(λ-λ1)(λ-λ2)...(λ-λn)λ^n-(a11+a22+...+a
因为若所有的方阵可以通过相似变换得到若当标准型,例如a11a1a2a31a31a3没标的都为0显然这个矩阵的行列式为所有对角线元素,即特征值的乘积而相似变换不改变行列式,所以矩阵所有特征值的乘积等于矩
只有任意矩阵所有特征值的和等于对角元素之和,没有任意矩阵所有特征值的乘积等于对角元素之积.矩阵所有特征值的乘积等于该矩阵的行列式.
利用特征值的性质,A的逆的特征值等于A的特征值的倒数,所以所求的行列式的三个特征值是:4·1-1=3;4/2-1=1;4/2-1=1行列式的值等于特征值的积:所以答案等于3
由已知,|A|=6所以|A^-1|=|A|^-1=1/6
-1若矩阵A的特征值为λ,则A的转置的特征值也为λ,而A的逆的特征值为1/λ.矩阵的转置即为矩阵的逆,即:λ=1/λ,所以:λ=1或-1.即正交矩阵的特征值为1或-1又行列式等于-1,所以-1一定是A