特征值基础解系求法

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:54:14
特征值基础解系求法
就是求特征值和特征向量时那个基础解系的问题

系数矩阵的行最简形为11/21000000每一行对应一个方程因为只有一个非零行,所以只有一个有效方程x1=(-1/2)x2-x3自由未知量x2,x3分别取(2,0),(0,1),代入解出x1,得基础解

请好人帮我讲讲线性代数“方阵的特征值和特征向量”里面的基础解系究竟怎么具体出来?

我们课本最常见的就是三阶,而且考试也以三阶为主,我就给你用三阶的举例说明吧三阶方阵A求特征向量,特征值的方法:1,先求特征多项式|λE-A|=0解出特征值λ1,λ2,λ3特征值一定有三个(因为三阶,或

线性代数特征值和特征向量的求法

lp87562514,首先你要明白,只有方阵才有特殊值.设矩阵为[A],求|λE-A|=0的所有λ,这些λ就为矩阵A的特征值,其中有的是重的,有几次就叫几重特征值.然后再解(λE-A)x=0,得到的这

[线性代数]特征值的求法

因为A的特征值为1,1和-2故|A-E3|,|A+2E3|,都等于零,(因为特征值就是|A-λE|=0的根)而|A^2+3A-4E|=|A+4E||A-E|=0再问:麻烦写一下具体求解的过程,可以吗?

关于矩阵特征值的求法,怎么用MATLAB软件求?

A1 =[ 1, 1/3, 1, 1/5, 1/4][ 3,   1, 2, 1

关于矩阵特征值的求法的变换,这个是怎么变换出来的?

就是求解三阶方阵罢了.三次方程看平时的积累了!

关于矩阵特征值与特征向量的求法问题

Au=λu(A-λE)u=0对任意向量u均应该成立,存在非零解u≠0的唯一条件是(A-λE)行列式为0|(A-λE)|=0一个矩阵A能够产生一个特征多项式,每一个n次的特征多项式也可以产生一个n*n矩

矩阵特征值求法有何技巧?(附有一题请帮忙解答下拜谢!)

将a12(或a21,a23,a32)化为0的同时,同行(或列)剩下的元素成比例比如这题用r3-2r1第3行化为2-2λ0λ-1再c1+2c3即可

求矩阵特征值与特征向量的数值求法有哪些

求三阶矩阵A=(123,312,231)的特征值和特征向量我看了1.计算行列式|A-λE|=1-λ2331-λ2231-λc1+

二阶矩阵的特征值和特征向量的求法

|A-xE|=2-x321-x=(2-x)(1-x)-6=x^2-3x-4=(x+1)(x-4)所以特征值是-1,4-1对应的特征向量:(A+E)x=0的系数矩阵为3322基础解系为[-11]',所以

这是书上例题的一道求矩阵的全部特征值和特征向量的题,但我不懂的是求基础解系的部分:

不好意思,这两天有事没上网. 齐次线性方程组的基础解系不是唯一的,两个基础解系都对只要满足:是Ax=0的解线性无关个数为n-r(A)则都是基础解系

有关线性代数特征值求法概念问题

齐次线性方程组(A-入I)x=0有非零解时,就有无穷的解系数阵的非零子式最高阶数可以等于未知数个数时,齐次线性方程组(A-入I)x=0只有零解这时λ不是特征值.总之,λ是特征值的充分必要条件是|A-λ

线性代数求基础解系已知一个n阶方阵的特征值,怎么求他的基础解系,最好举个例子说明下,求解的过程详细些最好,谢谢了

我不知道,你具体的疑惑在哪里,知道一个n阶A方阵的特征值以后,我们一般是来求解这样一个可逆矩阵P,使得A与由特征值构成的对角阵相似.下面是一道简单例题,你看看,其实,书面上表达很抽象的.

矩阵特征值的基础解系 怎么求出来的?如图线性代数矩阵特征值求解

再问:谢谢。但是怎么确定α1、α2分别取1和0的呢?再答:这种题有一个固定的套路,当你求出x1.x2.x3的函数关系时,一般就是分别取(1,0,x3)和(0,1,x3)再问:再问:谢谢。那这个题的基础

老师,您好!我想问下:基础解系,解向量,特征值向量,基的区别,

基础解系:是对于方程组而言的,方程组才有所谓的基础解系,就是方程所有解的“基”解向量:是对于方程组而言的,就是“方程组的解”,是一个意思.特征值向量:对于矩阵而言的,特征向量有对应的特征值,如果Ax=

能否将线性代数的特征值求法编个小软件?无论求多少次的特征值?

Matlab软件中早就有了,直接调用即可,当然是数值计算(有时不一定是准确解).因为求解矩阵的特征值需要求一元高次多项式的跟,而这个多项式超过五次是没有根式解的,只有数值方法的近似解,这个是经典问题.

这公式对吗?可以把逆矩阵和特征值求法给我吗

dc1再问:??再问:就dc1这里错了吧其他都对吗再答:恩再答: 再问:宝贝你看下两个二阶矩阵相乘的帮我写一下好吗再答: 

线性代数基础解系的求法

就以齐次方程组为例:假如是3阶矩阵r(A)=1矩阵变换之后不就是只剩一个方程了吗?这时候,你可以设x3为1,x2为0,得出x1然后设x3为0,x2为1,得出x1你可能会疑惑为什么要这么设,凭什么这么设

关于方阵的特征值与特征向量的解题步骤,是如何通过解线性方程组得到基础解系的?

就拿第一个特征值方程组来说,很简单解得x1=x2=0,x3为任意值,方便起见可以取为1,后来乘个c就是任意值第二个特征值方程组,先看第三个方程,解得x1=1,x3=-1,那个取负号无所谓,走后都要乘c

线性代数矩阵的特征值求法 要求变换过来的详细过程啊!在线等~!

步骤如下:1,第二列的负一倍加到第三行.2,然后第三行加到第二行.3,可以得到:(18-λ)*|17-λ-2||-410-λ|再算行列式就可以了算出来就是:(λ-18)^2*(λ-9)再问:恩在你回答