独立同分布的随机变量U~(0,5)期望方差怎么求
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:36:38
几何分布期望为5的话,其参数p=1/5=0.2,对应单个随机变量方差DX=(1-p)/p^2=20从而DY=DX/n=20/n
Y1和Y2不独立的情况下,它们函数的独立性也会受到相应的影响.但是你式子中表达的意思不太清楚,你写的g1g2分别是以x1x2为自变量的函数吗?你后面又问道Y1Y2之间的关系,是要提示它们是随机变量吗?
哎,都是最基本的题,写出来你参考一下,希望对你有所帮助吧:(很多式子,在下面的图片里)
当s>0时做变换s=x^2+y^2,t=x/y,求其反函数.反函数有两支:x=t*sqrt(s/(1+t^2)),y=sqrt(s/(1+t^2))以及x=-t*sqrt(s/(1+t^2)),y=-
随机变量相互独立是指若干随机变量仅仅满足相互独立的条件;随机变量相互独立且具有相同分布不仅满足相互独立的条件,还满足分布都相同的条件再问:�ֲ���ͬ��ʲô��˼����再答:���������зֲ
我是卖衣服的,售出价格是按照进价定的,赔本的买卖,原价出售不赚钱.那么进价的分布和售价的分布必然是相同的,而且它们不独立.比如30%的货物进价为100元,70%的货物进价为200元,那么必然有30%的
题目有问题吧,y用不上了再问:���ǵ�һ�ʣ�再问:�ڶ�����������X��Y�������ͬ�ֲ�U[0,1]����Z=Y+X�ĸ����ܶ�再答:再答:�ڶ��ʻ���Ҫ��再问:�
cov(U,V)=cov(x+y,x-y)=cov(x,x)-cov(x,y)+cov(y,x)-cov(y,y)变量X和Y相互独立-->cov(x,y)=cov(y,x)=0量X和Y相互同分布-->
∵cov(U,V)=E(U-EU)(V-EV)=E(X-Y-E(X-Y))E(X+Y-E(X+Y))=E(X-EX-Y+EY)E(X-EX+Y-EY)=E(X-EX)2-E(Y-EY)2=DX-DY由
Pxy是相关系数?应该是等于零
相等的,根据同分布就可知道
独立同分布是说随机变量之间相互独立,而且分布函数相同.既然分布函数相同,因此只要期望,方差是有限值,就必然是一样的.
第一步计算出X(n)的分布函数,从而分布密度.(有现成公式)第二步计算P(|X(N)-a|>e)=P(a-ea再问:X(n)的分布函数该怎么求再答:如果U(0,a)的分布函数是F(x),则Xn的分布函
中心极限定理(centrallimittheorem)是概率论中讨论××随机变量××序列部分和的分布渐近于正态分布的一类定理.这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分
密度函数就是分布函数直接求导来的,你直接相乘没有任何道理,因为这是连续型随即变量不是离散型查看原帖
这是个著名的问题.也很有工程用途: 当一个二维信号联合正态时,幅值和相位是独立的.见图:
E(Xn)=0×0.5+2×0.5=1E(X)=∑(1~n)E(Xi)/(3^i)=∑(1~n)1/(3^i)∑(1~n)1/(3^i)是一个等比数列,公比1/3,用等比求和公式得E(X)=1/2D(
Z=X-Y服从N(0,1).E(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)E(|Z|^2)=E(Z^2)=D(z)=1D(|z|)=1-2/π