独立正态分布相加减
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:19:27
两个独立正态分布随机变量的联合分布是二维正态分布,而二维正态分布的随机向量的线性组合还依然服从正态分布从而,……再问:为什么两个独立正态分布随机变量的联合分布是二维正态分布再答:独立,联合概率密度等于
A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这
方差都是相加的.如果X,Y独立,一定有D(X±Y)=D(X)+D(Y)再问:会不会答案错了??按照相减计算会得出书后的答案再答:那有可能是答案错了,D(X±Y)=D(X)+D(Y)是独立的随机变量的方
随极变量X,Y相互独立-->X,Y不相Z=XY-->E{Z}=E{XY}=E{X}E{Y}D(XY)=E{(Z-E(Z))^2}=E{Z^2}-E{Z}E{Z}=E{X^2}E{Y^2}-E{X}E{
Cov(X1+X2,X1-X2)=Var(X1)-Cov(X1,X2)+Cov(X1,X2)-Var(X2)=Var(X1)-Var(X2)=0所以X1+X2和X1-X2不相关.如果(X1,X2)的联
解题思路:关于高考解题过程:你好,正态分布是人教A版的一个高考考点,但是,北京高考会不会出现关于正态分布的题目,那就难说,所以既然是考点,就必须弄清楚。不过,正态分布这个考点比较简单,也好学。最终答案
是的,这是t检验的前提
无论是否独立,无论参数是否相同,正态分布的随机数相加必然还是正态分布.不过我想你问的是:有一组X1,X2,.,Xn是一组独立同分布的样本,服从正态分布;而Y1,Y2,.,Yn是另一组独立同分布的样本,
T检验不需要正态分布的前提,检验用的是T分布再问:THX!是我看书不认真,的确只要求方差齐即可。还想请教:如果我采集1000个人的信息来了解某疾病的发病因素,筛查出来患病的有150个。采集的变量有性别
不需要,谁和说总体服从正态分布时,样本方差和样本均值独立了啊?
是的只有相互独立的时候相加减得到的才能是正态分布
E(X1-2X2)=E(X1)-2E(X2)=0D(X1-2X2)=D(X1)+4D(X2)=4+16=20X1-2X2~N(0,20)
相加后仍然是正态分布,只是平均值和标准差可能会改变.相乘后应该就不再是正态分布了.与原来的两个正态分布当然有关.
1.独立的正态分布的联合分布也服从正态分布.2.没关系.3.去掉独立后,结论不成立.4.由分布密度来判断是否是二维正态分布.
两个变量都符合标准正态分布了.怎么个就方差不同呢?标准正态分布N(0,1),期望E=0,方差D=1也就说,两个变量都符合标准正态分布了,就期望和方差都相同了.叫同分布.楼主的问题应该是,两个变量都符合
(u1+u2,σ1^2+σ2^2)^代表平方哈,这是正态分布的可加性吧再问:那X-Y呢?谢谢你啊,要考试了其实是想知道X+Y与X-Y的方差相不相等。麻烦帮个忙再答:相等的,当X,Y不独立,D(X+(或
因为X,Y独立,所以Var(X-Y)=Var(X)+Var(Y)=2∑(∑^2)=2(∑^2)一般的,如果∑(大写,不是小写的σ)出现,它代表的就是方差阵:)
1fX(x)=(1/√2π)e^(-x^2/2)fY(y)=(1/√2π)e^(-y^2/2)因为x,y独立,所以联合概率密度所以fXY(x,y)=fX(x)fY(y)=(1/2π)e^[-(x^2+
是,比方书X服从N(a,b),Y服从N(c,d)那么X+Y服从N(a+b,c+d)X-Y服从N(a-b,c+d).
两个独立正态分布的随机变量的线性组合仍服从正态分布.这是二维正态分布的边缘分布(不需要独立)的线性组合服从正态分布的特殊情况.因为若X,Y服从相互独立的正态分布,则(X,Y)服从二维正态分布(密度函数