h是直线cd上一动点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:54:12
∠AMB的度数的度数不变=45°设∠BAO=2x,则,∠OBN=90°+2xAM平分∠BAO,BM评分∠OBN所以,∠BAM=∠MAO=x∠MBO=45°+x∠ABO=90°-2x所以,∠MBA=∠M
是的,你只要将线段BD或者AD延长与直线a或b相交于一点E或F就可以发现∠DBP=∠AEP(由于两直线平行)所以∠BPA=∠CAP+∠DBP(补角定理)
∵ABCD是菱形,∴AB=AD,∵∠DAB=60°,∴ΔABD是等边三角形,BD=AB=m=AC,∠ADB=60°=∠C,∵AE+CF=m,AE+DE=m,∴DE=CF,∴ΔBDE≌ΔBCF,∴BE=
已知E,F,G,H分别是空间四边形ABCD的各边AB,DA,BC,CD上的点,且直线EF与GH交于点P,求证,点B,D,P在同一条直线上E、F在平面ABD内,G、H在平面BCD内,且ABD与BCD交与
(1)过p做PM垂直bc,PN垂直DC,角PEC=角PBC(PBCE,四点共圆,或者转角也可以)又pn=pm所以三角形pmb全等三角形pne(2)AF+CE=EF三角形cbe逆时针旋转90°,证三角形
1.由托勒密定理:MC*AD+AM*CD=AC*MD及线段关系AC=AD=√2/2CD得MC+√2AM=MD所以MD-MC=√2AM2.由托勒密定理:MD*BC+MC*BD=MB*CD及线段关系BC=
告诉我是哪张图.再问:谢谢啊不过那个P点要移到你那个图的AB的右边再答:是这个么?但是以CE、DF、EF为三边的三角形明显不是直角三角形啊!再问:是的要证再答:我给你画出来,告诉你以CE、DF、EF为
(1)依题意,设直线AB的解析式为y=kx-3∵A(-1,0)在直线上,∴0=-k-3.∴k=-3.∴直线AB的解析式为y=-3x-3.(2)如图1,依题意,C(1,0),OC=1.由D(0,1),得
证明:易得∠DHE=∠CHF=60°(对顶角相等)∵AB∥CD∴∠EKG=∠DHF=60°∴∠EGK=180°-(∠EKG+∠KEG)=180°-90°=90°故△EKG是直角三角形.//------
50这是典型的饮马问题.作B关于直线L的对称点E,连接AE两点,AE与CD的交点就是所求P点,AE的长就是AP+BP的最小长度,又因为在题目中没有确定CD的长,要使AP+BP得到最小值就让CD等于0,
都有∠3+∠1=∠2这一等量关系作PK平行于AC则∠1=∠APK,∠3=BPK∵∠2=∠APK+∠BPK∴∠3+∠1=∠2
1)过C作DA的平行线,交BD于H证明△DCH全等于△ECB即可(2)过C作DA的平行线再由(1)得.可证DF=CF+BE
1.∠BPC+∠BPE+∠EPD=∠CPD=180°,而∠BPE=90°,==>∠BPC+∠EPD=90°==>∠PBC=∠EPD==>Rt△BPC∽Rt△PED当P在CD的延长线上时,易有PD是Rt
∵点D关于直线AC的对称点是点B,∴要使PD+PM的值最小,连接BM,交AC于点P,点P就是满足要求的点.此时,PD+PM=BP+PM=BM,在Rt△BCM中,BM=√(16+1)=√(17).PD+
(1)证明:如图1,连接FO并延长交⊙O于Q,连接DQ.∵FQ是⊙O直径,∴∠FDQ=90°.∴∠QFD+∠Q=90°.∵CD⊥AB,∴∠P+∠C=90°.∵∠Q=∠C,∴∠QFD=∠P.∵∠FOE=
以BC为x轴MN为y轴建立直角坐标系得C点坐标为[20],D点坐标为[1根号3]在直线MN上任取点P[xy]代入距离公式求得PC+PD=根号下y^2-2根号3y+4加根号下y^2+4由二次函数的最大[
连接BP,因为梯形ABCD关于MN对称,所以,BP=PC,△ABD是等腰三角形,∠A=120°,过点A作AE⊥BD于E,在Rt△AEB中,∠ABE=30°,∴AE=12AB=12,由勾股定理得:DE=
设CF=X,AE=M-X三角形BEF的面积(f(x))=菱形的面积-三角形AEB-三角形bfc-三角形EDF三角形AEB=4分之根号3乘(m-x)的平方BFC=4分之根号3乘mxEDF=4分之根号3乘
1、证明:连接DN∵AD平分∠BAC∴∠BAD=∠CAD∵CN⊥AD∴∠AHC=∠AHN=90∵AH=AH∴△AHC≌△AHN(ASA)∴AN=AC∵AD=AD∴△ADC≌△ADN(SAS)∴CD=N