用SPSS做主成分分析方差贡献率累计不超过80%怎么修改
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:11:42
1、确认选择这个选项吗?见下图.理论上选择这个选项,不可能没有结果的. 2、调换位置后,变量名是否变化了?3、String类型的数据只能分类变量,否则是不能用来说做数据分析的.分类变量,将字
因本例只是为了说明如何在SPSS进行主成分分析,故在此不对提取的主成分进行命名,有兴趣的读者可自行命名.标准化:通过Analyze→DescriptiveStatistics→
这个factor1就是主成分分析法计算出来的因子得分,跟主成分得分是完全不一样的概念,一般现在都是直接采用这个因子得分进行接下来的计算因为主成分得分还要经过复杂的换算,且spss无法直接给出再问:那主
在score那里点击第一个选项,最后OK,可以在原始数据中看到主成分得分.再问:直接用那个主成分得分*SQR(方差特征值),再用方差特征值做权重就是最终得分吗?不需要用到载荷矩阵,是吗?再答:是的,用
恩!第一个是特征值.一般有大于1的或者大于0.5,累计方差百分比一般要求大于85%才能够进行主成分分析.得到的是每个变量的指标,相关系数吧a.然后就是根据特征值b,求向量系数u,u=a/sqr(b).
因为对阁下的题目不了解,所以不知道上图中的结果代表什么含义.你的理解是正确的,主成分分析得到的主成分是一个综合性指标.从数学的运算来看,主成分分析的过程只是在原来的相关系数矩阵上做了一个正交旋转.而降
得到两个主成分的前提是它们的单位根大于1吧.检验你先看看主成分分析的原理.看懂了你就会做啦
我觉得你是说你有两个变量,一个变量是样品编号,另一个是样品的波长,是这样吗?我不太明白这个怎么会想到做主成分呢?还是说你还有样本的许多属性作为变量,这样的话你就要把每个样本的数据作为一列啊.ppv课网
仅作主成分分析是不用看KMO值的,提取主成分中解释方差较大的变量,构建新的指标体系,然后在试图用因子分析,另外注意,主成分分析一般不用来赋权!
你直接设置累计贡献率要达到90%就可以啦再问:这里有个基于特征值--特征值大于(A):但是那个框框里不能输入,是不是我的spss的问题啊?再答:你看自己要保留几个因子然后再因子的固定数量输入相应的数值
可以的啊,你这个说明提取了3个主成分,前三个主成分的累计贡献率为94.699%,你这个累计贡献率已经很高了,很不错的
以下全属个人看法,首先我认为,楼主对主成分分析还没有一个清楚的认知,导致所给的图形就不是最终判断分析的结果.在多元统计分析中,主成分分析是依靠因子分析的结果来进行的.请饶在下唐突,不过确实,楼主的给因
用直交旋转的图直交旋转后因素解释更为显著
从你得到的结果老看,数据之间的相关性较小,不适合做主成分分析,并且可能你的变量太多,数据过少导致很多数值没有.
①如果你的指标因子中出现了负向指标,即你说的越小越好,那么我建议你不要用SPSS进行标准化,因为SPSS默认的标准化方法是标准差标准化,对负向指标不太合适.你可以手动用excel进行极差标准化,公式为
其次,用SPSS软件做主成分分析也没那么复杂,不过你要钻研一番.下面的说明及举例希望可以对你有帮助:主成分分析法在SPSS中的操作1、指标数据选取、收集与
0.你这个问卷设计得有问题,我用你的数据做了个问卷的项目分析:分别是题总相关、题项区分度.两项分析得出的结果都不是很理想.1.在题项总相关那里,只有域名规范、响应速度是显著的,即是跟你的问卷目的相关.
分析--降维--因子分析,注意在旋转选项中勾选一种方法.
这里当然选五个了啊,一般按特征值大于1来选,方差贡献率越大越好,大于80%也不是不选后面的因子了再问:谢谢哦,我看有些实例没有出现这样结果,一般对应的特征值大于1也就差不多85%,这样的输出结果不知道
老大,首先,你上传的图我无法看清.其次,用SPSS软件做主成分分析也没那么复杂,不过你要钻研一番.下面的说明及举例希望可以对你有帮助:主成分分析法在SPSS中的操作1、指标数据选取、收集与录入(表1)