I=∫(2x-y 4)dx (3x 5y-6)dy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:13:19
I=∫(2x-y 4)dx (3x 5y-6)dy
∫(2^x)/((2^x)+3)dx

∫x^3/(9+x^2)dx=1/2∫x^2/(9+x^2)dx^2(x^2=t)=1/2∫t/(9+t)dt=1/2∫(t+9-9)/(9+t)dt=1/2∫[1-9/(9+t)]dt=1/2t-9

求积分 ∫sqrt(3x*x-2)dx=?

∫√(3x²-2)dx令x=√(2/3)secz,dx=√(2/3)secztanzdz√(3x²-2)=√(2sec²z-2)=√2tanz原式=2/√3*∫seczt

设函数Y=f(x)由x2+3y4+x+2y=1所确定,求dy/dx

把原式两边对x求导得:x^2+12y^3*dy/dx+1+2dy/dx=0合并同类项移项得:dy/dx=-(1+2x)/(12y^3+2)

∫[(x^2-x+6)/(x^3+3x)]dx

(x^2-x+6)/(x^3+3x)=2/x-(x+1)/(x^2+3).原式=∫2/xdx-∫(x+1)/(x^2+3)dx=2ln|x|-(1/2)ln(x^2+3)-(1/√3)arctan(x

∫(1-x)^2/x^3 dx

∫(1-x)^2/x^3dx=∫(1-2x-x^2)/x^3dx=∫(x^(-3)-2x^(-2)+x^(-1))dx=1/(-3+1)x^(-3+1)-1/(-2+1)x^(-2+1)+ln|x|+

∫ x/(1+X^2)dx=

=1/2∫1/(1+x^2)d(1+x^2)=1/2ln(1+x^2)+c

∫x^3/(9+x^2)dx=?

∫x^3/(9+x^2)dx=∫[x-9x/(9+x^2)]dx=∫xdx-9/2∫1/(9+x^2)dx^2=∫xdx-9/2∫1/(9+x^2)d(9+x^2)=1/2x^2-9/2ln(9+x^

∫sin^3(x)cos^2(x)dx=

把一个sin(x)拿出来∫sin^3(x)cos^2(x)dx=-∫sin^2(x)cos^2(x)d(cos(x))=-∫(1-cos^2)cos^2(x)d(cos(x))=-∫cos^2-cos

∫(x-1)^2/x^3 dx

∫(x²-2x+1)/x³dx=∫(1/x-2/x²+1/x³)dx=lnx+2/x-2/x²+C

∫x^3/1+x^2 dx

∫x^3/(1+x^2)dx=∫[x^3+x-x]/(1+x^2)dx=∫x-x/(1+x^2)dx=x²/2-1/2ln[1+x^2]+c你的好评是我前进的动力.我在沙漠中喝着可口可乐,唱

∫2^x*3^x/(9^x-4^x) dx

∫2^x*3^x/(9^x-4^x)dx=∫(2/3)^xdx/[1-(4/9)^x]=[ln(2/3)]^(-1)∫d[(2/3)^x]/{1-[(2/3)^x]^2}={[ln(2/3)]^(-1

x-9/[(根号)x]+3 dx ∫ x+1/[(根号)x] dx ∫ [(3-x^2)]^2 dx

(x^2)/2-18x^(1/2)+3x+C0.5*x^2+2*x^(1/2)+C9x-2x^3+0.2*x^5+C

∫(X^3)/(1+X^2)dx

具体见图片内容:再问:第二步怎么来的?没认真听课现在看起来很吃力麻烦讲解下我会提高悬赏的再答:就是自然对数lnx求导的形式:(lnx)'=1/x

∫X^2 e^-X^3 dx.

原式=-1/3∫e^-X^3d(-X^3)=-1/3e^-X^3+c

∫x^3/9+X^2 dx.

我想你的题应该是这样吧∫x³/(9+x²)dx=(1/2)∫x²/(9+x²)d(x²)=(1/2)∫(x²+9-9)/(9+x²

∫x^3/(9+x^2)dx

∫x^3/(9+x^2)dx=1/2∫x^2/(9+x^2)dx^2(x^2=t)=1/2∫t/(9+t)dt=1/2∫(t+9-9)/(9+t)dt=1/2∫[1-9/(9+t)]dt=1/2t-9

解方程组:x+y2=3x−2y=10+6x+y4

根据题意,得x+y2=3x−2yx+y2=10+6x+y4,整理得x−y=0(1)4x−y=−10(2),由(1)-(2),并解得x=-103(3).把(3)代入(1),解得y=-103,所以原方程组

∫(2^x+3^x)²dx

展开得到原积分=∫4^x+2*6^x+9^xdx=4^x/ln4+2*6^x/ln6+9^x/ln9+C,C为常数再问:(⊙o⊙)哦看懂了谢谢再答:不必客气的啊~

∫1/[(2-3x)(2x+1)] dx=

∫1/[(2-3x)(2x+1)]dx=∫6/[(4-6x)(6x+3)]dx=∫6/7[1/(4-6x)+1/(6x+3)]dx=1/7[∫1/(6x+3)d(6x+3)+∫1/(4-6x)d(4-