I=∫2xydx x^2dy 其中L:X^2 a^2 y^2 b^2=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:16:24
令P=x^2-y,Q=-x-(cosy)^2∵αP/αy=αQ/αx=-1∴由格林定理知,此曲线积分与路径无关,只与始点和终点有关于是,计算此积分取路径为:y=0,0≤x≤1故I=∫x^2dx=1/3
(e^xsiny-3y)对y求导得:e^xcosy-3(e^xcosy+x)对x求到得:e^xcosy+1考虑L1:(0,2)到(0.0)的直线段,则L和L1构成封闭曲线,逆时针方向,所围区域为D由格
∫L(e^xsiny-3y)dx+(e^xcosy+x)dy=∫L(-4y)dx=0
补上直线N:y=0、使得半圆y=√[1-(x-1)²]与直线N围成闭区域.P=e^xsiny-my、Q=e^xcosy-m∂P/∂y=e^xcosy-m、∂
应该等于2xf'(x^2),看成复合函数就行了……
应用格林公式,第一个积分号的上下限为0和π,第二个积分号为0到2cos#,答案为1.5π再问:为什么是0到2cos#重点的过程
(x^2+1)dy=(1-y^2)dxdy/(1-y)(1+y)=dx/(x^2+1)1/2lnl(y-1)/(y+1)l=arctanx+c再问:在帮我一个,我给再加五分,y′=y,y(0)=1.谢
∵L圆周x^2+y^2=2x的半径是1∴L圆周面积∫∫dxdy=π*1^2=π(S表示L圆周x^2+y^2=2x区域)故∫L(x^2-2y)dx+(x+y^2siny)dy=∫∫[α(x+y^2sin
取充分小的正数e,在单位圆内做椭圆x^2+4y^2=e^2,方向为逆时针方向,记为S+S包围区域为D,其长轴为e,短轴为e/2,面积为pi*e^2/2.原积分=∫LPdx+Qdy=∫L并S-Pdx+Q
∮xy^2dy-x^2ydx=∫∫(x^2+y^2)dxdy≠∫∫a^2dxdy!用高斯公式已将曲线积分化为了二重积分,是在整个区间D上,不是在圆周上.
用格林公式∫s2dxdy2*4=8
1.等式两边除以x²并乘以dy得:(1/x)dx=-kdy两边积分得:lnx+C1=-ky∴y=-(1/k)lnx+C(C=1/C1)2.等式两边乘以dx得(2x+6x²)dx=y
由于积分与路径无关,2xf(x)=f'(x)+2x则f'(x)-2xf(x)=-2x,一阶线性微分方程,套公式f(x)=e^(∫2xdx)[∫-2xe^(-∫2xdx)dx+C]=e^(x²
用Green公式:∫CPdx+Qdy=∫∫D(aQ/ax--aP/ay)dxdy=∫∫D(y^3+e^y--x^3--e^y)dxdy=∫∫D(y^3--x^3)dxdy对称性积分区域D关于x,y轴都
首先第二型曲线积分中的积分曲线是有方向的,而你的题目里没有,我就默认是逆时针方向了.用格林公式计算,为此补充曲线C':x轴上0到2一段,则C和C'构成闭曲线,其所围区域为以(0,0),(2,0),(1
再问:xΪɶŪ��2cos再答:参数方程嘛再问:==��Ϊʲô����3cos4cos5cos��Ҳ�Dz���̰�再答:根据圆C设的啊,不用管那个路径吗?半径是2,所以设2cost,2sint凡是(x