I=∫∫Dx2dxdy.D:x=3y.x y=8
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:11:36
设∫f(x)dx=F(x)+C,则F'(x)=f(x);那么d∫f(x)dx=d[F(x)+C]=dF(x)=F'(x)dx=f(x)dx
应用格林公式,第一个积分号的上下限为0和π,第二个积分号为0到2cos#,答案为1.5π再问:为什么是0到2cos#重点的过程
原式=∫dy∫(1+x+2y)dx=4∫(1+y)dy=4×8=32.
这道题是要求∫f(x)的导数(即[∫f(x)]’),所以很明显C选项是错的.设f(x)的一个原函数为F(x),则∫f(x)=F(x)+C(C为任意常数)所以[∫f(x)]’=[F(x)+C]'=f(x
设F(x)是f(x)的一个原函数那么∫f(x)dx=F(x)+C而d∫f(x)dx=d[F(x)+C]=f(x)dx
∫(r^2/r^2+1)dr=∫dr-∫1/(r^2+1)dr再问:∫1/(r^2+1)dr怎么求再答:arctanr
原式=∫dθ∫[(rcosθ)/r²]rdr(极坐标代换)=∫cosθdθ∫dr=[sin(π/2)-sin0](1-0)=1.
原式=∫(-π/2,π/2)dθ∫(0,1)[(1+r²sinθcosθ)/(1+r²)]rdr(极坐标变换)=1/2∫(-π/2,π/2)dθ∫(0,1)[(1+rsinθcos
y=x=>θ=π/4y=x^4=>rsinθ=(rcosθ)^4=>r^3=sinθ/(cosθ)^4=>r=[sinθ/(cosθ)^4]^(1/3)I=∫[0->π/4]∫[0->[sinθ/(c
看了你的题,我想,你可能题写地有错误,把加号都给省了,我按猜测的正确题目,试答如下:
令x=cosθ,y=sinθ由题,I=∫(-π/2,π/2)dθ∫(cosθ,1)r^2dr+∫(π/2,3π/2)dθ∫(0,1)r^2dr=(π/3-4/9)+π/3=2π/3-4/9没有公式编辑
i=∫∫Dx²ydσ,D:0≤x≤3,0≤y≤1=∫(0,3)∫(0,1)x²ydydx=∫(0,3)x²*[(1/2)y²|(0,1)]dx=∫(0,3)(1
对,因为∫f(x)dx是f(x)的一个原函数,所以再对这个原函数微分仍然得到的是f(x)!
“其中D由直线y=x,y=x与y轴围成”有错!再问:其中D由直线y=x,y=1与y轴围成求帮忙看下这题到底怎么做。。再答:二重积分I=∫∫(D)x^2*e^(-y^2)dxdy=∫e^(-y²
这个双重积分,要利用双重积分的性质来解答.主要是利用单调性
I = ∫∫ (1 + xy)/(1 + x² + y²) dxdy,D&nbs