I=∫∫Dx2dxdy.D:x=3y.x y=8

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:11:36
I=∫∫Dx2dxdy.D:x=3y.x y=8
d ∫ f(x)dx=?

设∫f(x)dx=F(x)+C,则F'(x)=f(x);那么d∫f(x)dx=d[F(x)+C]=dF(x)=F'(x)dx=f(x)dx

计算曲线积分I=∫(-x^2y)dy+xy^2dy,其中L是区域D={(x,y)|x^2+y^2

应用格林公式,第一个积分号的上下限为0和π,第二个积分号为0到2cos#,答案为1.5π再问:为什么是0到2cos#重点的过程

计算二重积分I=∫∫(1+X+2y)dxdy ,D={(x,y) | 0≤x≤2,-1≤y≤3}

原式=∫dy∫(1+x+2y)dx=4∫(1+y)dy=4×8=32.

高数题 d[∫f(x)]/dx=?

这道题是要求∫f(x)的导数(即[∫f(x)]’),所以很明显C选项是错的.设f(x)的一个原函数为F(x),则∫f(x)=F(x)+C(C为任意常数)所以[∫f(x)]’=[F(x)+C]'=f(x

d∫f(x)dx = ?

设F(x)是f(x)的一个原函数那么∫f(x)dx=F(x)+C而d∫f(x)dx=d[F(x)+C]=f(x)dx

设I=二重积分∫∫ln(x^2+y^2+1)dxdy,其中D为圆域x^2+y^2

∫(r^2/r^2+1)dr=∫dr-∫1/(r^2+1)dr再问:∫1/(r^2+1)dr怎么求再答:arctanr

计算二重积分I=∫∫ x/(x²+y²)dxdy,其中D为区域x²+y²≤1,x

原式=∫dθ∫[(rcosθ)/r²]rdr(极坐标代换)=∫cosθdθ∫dr=[sin(π/2)-sin0](1-0)=1.

设区域D={(x,y)|x²+y²≤1,x≥0},计算二重积分I=∫∫(1+xy)/(1+x

原式=∫(-π/2,π/2)dθ∫(0,1)[(1+r²sinθcosθ)/(1+r²)]rdr(极坐标变换)=1/2∫(-π/2,π/2)dθ∫(0,1)[(1+rsinθcos

求积分I= ∫ ∫根号(x^2+y^2)dxdy积分区域是D,其中D由y=x与y=x^4围成.用极坐标的方法.

y=x=>θ=π/4y=x^4=>rsinθ=(rcosθ)^4=>r^3=sinθ/(cosθ)^4=>r=[sinθ/(cosθ)^4]^(1/3)I=∫[0->π/4]∫[0->[sinθ/(c

求积分I= ∫ ∫根号(x^2 y^2)dxdy积分区域是D,其中D由x^2 y^2=1与x^2 y^2=x围成

看了你的题,我想,你可能题写地有错误,把加号都给省了,我按猜测的正确题目,试答如下:

求积分I= ∫ ∫根号(x^2+y^2)dxdy积分区域是D,其中D由x^2+y^2=1与x^2+y^2=x围成

令x=cosθ,y=sinθ由题,I=∫(-π/2,π/2)dθ∫(cosθ,1)r^2dr+∫(π/2,3π/2)dθ∫(0,1)r^2dr=(π/3-4/9)+π/3=2π/3-4/9没有公式编辑

计算:i=∫∫Dx^2ydσ,D:0≤x≤3,0≤y≤1

i=∫∫Dx²ydσ,D:0≤x≤3,0≤y≤1=∫(0,3)∫(0,1)x²ydydx=∫(0,3)x²*[(1/2)y²|(0,1)]dx=∫(0,3)(1

d∫f(x)dx=f(x) 对吗?

对,因为∫f(x)dx是f(x)的一个原函数,所以再对这个原函数微分仍然得到的是f(x)!

计算二重积分I=∫∫(D)x^2*e^(-y^2)dxdy,其中D由直线y=x,y=x与y轴围成

“其中D由直线y=x,y=x与y轴围成”有错!再问:其中D由直线y=x,y=1与y轴围成求帮忙看下这题到底怎么做。。再答:二重积分I=∫∫(D)x^2*e^(-y^2)dxdy=∫e^(-y²

设 D:(x-2)²+(y-1)²≤1,比较I₁=∫∫D(x+y)dσ,I₂

这个双重积分,要利用双重积分的性质来解答.主要是利用单调性

二重积分I=∫∫(1+xy)/(1+x^2+y^2)dxdy其中D={(x,y)/x^2+y^2=0}

I = ∫∫ (1 + xy)/(1 + x² + y²) dxdy,D&nbs