I=∫∫f|xy|dσ,其中D是由圆周x^2 y^2=a^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:09:19
I=∫∫f|xy|dσ,其中D是由圆周x^2 y^2=a^2
d ∫ f(x)dx=?

设∫f(x)dx=F(x)+C,则F'(x)=f(x);那么d∫f(x)dx=d[F(x)+C]=dF(x)=F'(x)dx=f(x)dx

证明:如果∫f(x)d×=f(x)+c则∫f(ax+b)dx=1/af(ax+b)+c其中a,b

∫f(ax+b)dx=1/a∫f(ax+b)d(ax+b)=1/aF(ax+b)+c

计算曲线积分I=∫(-x^2y)dy+xy^2dy,其中L是区域D={(x,y)|x^2+y^2

应用格林公式,第一个积分号的上下限为0和π,第二个积分号为0到2cos#,答案为1.5π再问:为什么是0到2cos#重点的过程

计算二重积分∫∫(D)3xy^2dxdy,其中D由直线y=x,x=1及x轴所围成区域

积分区域:0≤x≤1,0≤y≤x∫∫3xy^2dxdy=3∫xdx∫y^2dy=3∫x[y^3/3]dx=3∫x*x^3/3dx=∫x^4dx=x^5/5=1/5

设D=x³,y=1,x=-1所围成的平面闭区域,其中D₁为D在第一象限的部分,则∫∫(xy+cos

设D2:由y=x^3y=-x^3x=-1所围成的区域.D3:由y=x^3y=-x^3y=1所围成的区域.则根据重积分的区域可加性和对称性:∫∫(D)(xy+cosxsiny)dxdy=∫∫(D2)(x

高数题 d[∫f(x)]/dx=?

这道题是要求∫f(x)的导数(即[∫f(x)]’),所以很明显C选项是错的.设f(x)的一个原函数为F(x),则∫f(x)=F(x)+C(C为任意常数)所以[∫f(x)]’=[F(x)+C]'=f(x

d∫f(x)dx = ?

设F(x)是f(x)的一个原函数那么∫f(x)dx=F(x)+C而d∫f(x)dx=d[F(x)+C]=f(x)dx

d∫f(x)dx=f(x) 对吗?

对,因为∫f(x)dx是f(x)的一个原函数,所以再对这个原函数微分仍然得到的是f(x)!

d(∫f(x)dx)=f(x)对吗?

你这是求微分?∫ƒ(x)dx=F(x)+Cd[∫ƒ(x)dx]=[F(x)+C]dx=ƒ(x)dx,这是微分形式而d[∫ƒ(x)dx]/dx=d[F(x)+C]

计算二重积分、∫∫[D](x/y^2)dxdy,其中D是曲线y=x,xy=1及x=2围成

原式=∫<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx=∫<1,2>(x²-1)dx=2³

计算∫∫(D)x^2ydxdy,其中D是由曲线xy=1,y=√x,x=2围成的平面区域

可以X型或Y型方面计算将二重积分化为普通定积分计算即可若是X型,先计算对y的定积分,后对x若是Y型,先积分对x的定积分,后对y若是Y型的话需要分段,因为积分区间中有两条曲线的交接.

∫∫ye^(xy)dxdy,其中D是由曲线xy=1与x=1,x=2,及y=2所围

原式=∫[1,2]dx∫[1/x,2]ye^(xy)dy=∫[1,2]dx∫[1/x,2]y/xe^(xy)d(xy)第一个对y的积分中x是常数=∫[1,2]1/xdx∫[1/x,2]yde^(xy)

∫∫(x^2+y)dxdy,其中D为直线y=x,x=2和双曲线xy=1所围成的区域, 计算二重积分.

∫∫(D)(x²+y)dxdy=∫(1→2)dx∫(1/x→x)(x²+y)dy=∫(1→2)[x²y+y²/2]|(1/x→x)dx=∫(1→2)[x

二重积分I=∫∫(1+xy)/(1+x^2+y^2)dxdy其中D={(x,y)/x^2+y^2=0}

I = ∫∫ (1 + xy)/(1 + x² + y²) dxdy,D&nbs

设f(x,y)连续,且f(x,y)= xy + ∫∫D f(u,v)dudv,其中D是由y=0,y=x……2,x=1所围

二重积分∫∫Df(u,v)dudv和∫∫Df(x,y)dxdy实际上是一样的,只是改变了字母显然在这个式子里,二重积分∫∫Df(u,v)dudv进行计算之后得到的是一个常数,不妨设其为a,即f(x,y