用三重积分算z=x² 2y²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:48:37
symsxyzint(int(int('y*sin(x)+z*cos(x)',x,0,pi),y,0,1),z,-1,1)结果:ans=2
这是一个圆锥面和一个旋转抛物面相交的情形.画出图像就很容易定出积分上下限了.方法一:用三重积分计算体积,积分限为:0≤θ≤2π,0≤ρ≤1,ρ²≤z≤ρ,积分后的结果有v=π/6方法二:先用
再答:再答:有不懂之处请追问,望采纳。
z=√(5-x^2-y^2)与x^2+y^2=4z,联立解,消去z,得x^2+y^2=4,即交线在xOy平面上的投影.V=∫∫∫dv=∫dt∫rdr∫dz=π∫r[√(5-r^2)-r^2/4]dr=
∫∫∫(x^2+y^2+z^2)dxdydz=∫(0,2π)dθ∫(0,π/2)sinφdφ∫(0,a)r^4dr=(2π/5)a^5
三次积分自己算再问:截面法呢,主要是截面法亲~
具体见图片,不过由于积分区域是关于xoy面对称的,而(y^2+x^2)z是关于z来说是奇函数,所以这部分的积分不用算就等于0了.
方法有2种,一是求圆锥面与球面的交面在xoy平面的投影,x^2+y^2=1/2,于是可得D={(x,y)|-√(1/2-x^2)≤y≤√(1/2-x^2),-√2/2≤x≤√2/2},则∫∫∫(x+z
稍等再答:再答:降三重积分为二重积分最简单。
可能是你的哪里算漏了吧
积分限定的是正确的,不是正解.∫∫∫zdv=∫(0,1)zπz^2dz+∫(1,√2)zπ(2-z^2)dz=π/4+π[z^2-(1/4)z^4](1,√2)=π/4+π[(2-1)-(1-1/4)
立体体积可用三重积分表示,V=∫∫∫dxdydz,积分区域为z=6-x^2-y^2及z=√x^2十y^2所围成的立体,联立两曲面方程,解得z=2即两曲面的交接面.用截面法计算此三重积分,V=∫(0到2
可能是哪里想不通吧~以✔10为上限的是投影法,以✔(2x)为上限的是切片法再问:懂了懂了,一时糊涂了,谢谢你!
原式=∫dθ∫dφ∫r²*r²sinφdr(作球面坐标变换)=2π∫sinφdφ∫r^4dr=2π[cos(0)-cos(π)]*a^5/5=4πa^5/5.
x²+y²+z²=zx²+y²+(z-1/2)²=(1/2)⁵-->r=cosφ∫∫∫√(x²+y²+z
积分域关于x轴和y轴都对称,所以对x对y的积分都是0
(x+y+z)²=x²+y²+z²+2xy+2xz+2yz,由于积分区域关于xoy面、xoz面对称,而2xy、2xz、2yz关于y或z为奇函数,因此它们的积分为
∵所求体积在xy平面的投影是S:x²/4+y²/2=1∴所求体积=∫∫[(4-y²)-(x²+y²)]dxdy=∫∫(4-x²-2y