用分部积分法求定积分:∫(上限√ln2,下限0)x^3e^(x^2)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:52:31
1,xln(1+x^2)-∫2x^2/(1+x^2)dx=xln(1+x^2)-2∫(1-1/(1+x^2))dx=xln(1+x^2)-2(x-arctanx)2,设t=√x,x=t^2,dx=2t
∫(0→1)x²e^xdx=∫(0→1)x²de^x=[x²e^x]|(0→1)-∫(0→1)2xe^xdx,分部积分=e-2∫(0→1)xde^x=e-2[xe^x]|
再问:噢,原来乘少了一个,智商捉急。谢谢!再答:很高兴能帮到你!再问:哪里哪里,是我该谢谢你。
再答:再答:再答:再问:非常感谢
再问:第二步怎么到第三步的?再答:
(∫上1下0)x^2e^xdx=(x²-2x+2)e^x在[0,1]的端点值差=e-2(用两次分部积分法降低被积函数中x的次数.)
可进行两次分部积分如图间接解出这个不定积分.经济数学团队帮你解答,请及时采纳.
2是平方还是x的系数啊,是平方的话∫xtan2xdx=∫x(sec2x-1)dx=∫xsec2xdx-∫xdx=∫xdtanx-∫xdx=xtanx-∫tanxdx-∫xdx=xtanx+ln|cos
原式=-∫xde^(-x)=-xe^(-x)+∫e^(-x)dx=-xe^(-x)-e^(-x)(1,0)=(-1/e-1/e)-(0-1)=1-2/e再问:为什么没有用∫(b,a)udv=uv|(b
再问:好奇怪啊再问:我怎么算出来不是这个呢再问:再问:能帮我看看,哪儿错了吗再答:看不懂,把你写的用红笔标下吧再问:就是最后一步的时候再问:把—16/25…移到左边相加不应该是41/25吗再问:你写的
∫[0,π]sinx^(n-1)cosx^(n+1)dx=∫[0,π]sinx^(n-1)cosx^(n-1)*cosx^2dx=(1/2^n)∫[0,π](sin2x)^n[(1+cos2x)/2]
给你讲过了,我懒得打了.你做完之后把答案贴出来把
再问:对,第一道,我不知道-1/2ln2怎么来,我自己算错是1/2ln2,你可以说一下吗再问:哦懂了再答:ln2带入就是了再答:前面负号你是不是掉了再问:∫xe∧(-x)dx=∫xd(-e∧-x)这里
你确定要用分部积分吗?不用分部积分可以吗?
原式=∫x²d(e^x)=x²e^x-∫e^xd(x²)=x²e^x-2∫xe^xdx=x²e^x-2(x-1)e^x+c
∫0→1xe^-xdx=-∫(0,1)xde^(-x)=-[xe^(-x)(0,1)-∫(0,1)e^(-x)]=-[e+e^x(0,1)]=1-2e∫(0→1/2)arcsinxdx=xarcsin
∫x^2cosxdx=x^2sinx-2∫sinxxdx=x^2sinx+2xcosx+2∫cosxdx=x^2sinx+2xcosx+2sinx∫[0,π]x^2cosxdx=2π
设u=x,v'=sinx则u'=1,v=-cosx则原积分∫(π/4,0)xsinxdx=⦗-xcosx⦘(π/4,0)-∫(π/4,0)-cosxdx=(-π/4)×(√
这是一道用分部积分法做的非常著名的题目.∫[(secx)^3]dx=∫secxd(tanx)=secxtanx-∫secxtan²xdx=secxtanx-∫secx(sec²x-