用数学归纳法证明n的立方 (n 1)的立方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:48:15
用数学归纳法证明n的立方 (n 1)的立方
用数学归纳法证明:Sn=n^2+n

有条件a1=2,d=2吧,an=2n,S1=a1=1*(1+1),其满足,假设Sj=j^2+j=j(j+1),而a(j+1)=2(j+1),则S(j+1)=Sj+a(j+1)=(j+1)(j+2),满

用数学归纳法证明:根号(n^2+n)

不能,格式就不说了n=1假设n=k时成立n=k+1时根号((k+1)^2+(k+1))=根号(k^2+k+2(k+1))

用数学归纳法证明:n的3次方 5n能被6整除

n=1时结论成立假设n=k时成立,即k^3+5k能被6整除当n=k+1时,(k+1)^3+5(k+1)-k^3-5k=3k(k+1)+6k(k+1)必为偶数,所以3k(k+1)+6能被6整除故(k+1

数学归纳法证明 < {(n+1)/2 }的n 次方

当n=1时,n!=1!=1=[(n+1)/2)]^n当n=2时,n!=2!=2

请用数学归纳法证明:n平方 小于 2的n次方

应该是n>=5时n^2=5即k^20所以k^2>2k+1所以2^k>k^2>2k+1所以2k+1-2^k

n*n矩阵有2行相同,用数学归纳法证明它的行列式为0

n=2时,显然假设当n=k时成立,则当n=k+1时,设|A|是有2行相同的k+1阶行列式,只需证明|A|=0事实上,设A的第i行与第j行相同,对|A|按第一列展开,由归纳假设,a_{l1}(l不等于i

比较2的n次幂与4n的大小,用数学归纳法证明.

solve(2^n=4*n);/1\/1\LambertW|--ln(2)|LambertW|-1,--ln(2)|\4/\4/--------------------,---------------

用数学归纳法证明不等式:1n

证明:(1)当n=2时,左边=12+13+14=1312>1,∴n=2时成立(2分)(2)假设当n=k(k≥2)时成立,即1k+1k+1+1k+2+…+1k2>1那么当n=k+1时,左边=1k+1+1

用数学归纳法证明不等式 2^n

原式等价于n再问:n+1

数学归纳法证明,求助用数学归纳法证明:[13^(2n)-1] Mod 168=0

当n=1时,13^(2n)-1=168,成立设当n=k时成立,即13^(2k)-1能够被168整除,则当n=k+1时,有13^(2k+2)-1=13^2kx169-1=13^2kx(168+1)-1=

用数学归纳法证明

解题思路:分析:由已知条件得到x2,x3,x4,x5,x6,猜想数列递减,再利用数学归纳法证明。解题过程:

用数学归纳法证明二分之一加二的平方分之一加二的立方分之一加到二的n次方分之一等于1-二的n次方分之一

证明:当n=1时,2分之1=1-2分之1,等式成立假设n=m时等式成立但n=m+1时左边=1-2的n次方分之1+2的(n+1)次方分之1=1-2的(n+1)次方分之2+2的(n+1)次方分之1=1-2

对于n∈N*,用数学归纳法证明:

证明:设f(n)=1•n+2•(n-1)+3•(n-2)+…+(n-1)•2+n•1.(1)当n=1时,左边=1,右边=1,等式成立;(2)设当n=k时等式成立,即1•k+2•(k-1)+3•(k-2

用数学归纳法证明 n的3次方+5n能被6整除

n=1时结论成立假设n=k时成立,即k^3+5k能被6整除当n=k+1时,(k+1)^3+5(k+1)-k^3-5k=3k(k+1)+6k(k+1)必为偶数,所以3k(k+1)+6能被6整除故(k+1

用数学归纳法证明的步骤?

基本步骤  (一)第一数学归纳法:  一般地,证明一个与自然数n有关的命题P(n),有如下步骤:  (1)证明当n取第一个值n0时命题成立.n0对于一般数列取值为0或1,但也有特殊情况;  (2)假设

用数学归纳法证明 2的N次方+2大于N的平方

题目没错楼上理解错了①当N=1时,4〉1显然成立.当N=2时,6>4显然成立当N=3时,10>9,显然成立②假设N=K时成立,即2^K+2〉K^2……(k〉3)那么2^(k+1)+2—(K+1)^2=

用数学归纳法证明4^n+15n-1n是9的倍数

首先题目打错了,应该是“4^n+15n-1是9的倍数”,而不是“4^n+15n-1n是9的倍数”(否则当n=2时结论就不成立)(1)当n=1时,4^n+15n-1=18是9的倍数(2)假设当n=k时,

用数学归纳法证明(2^n为2的n次幂)

f(n)=1+1/2+1/3+...+1/(2^n)-1-n/2g(n)=1+1/2+1/3+...+1/(2^n)-1/2-nf(1)=1+1/2-1-1/2=0若f(n)≥0f(n+1)=1+1/

一道用数学归纳法证明的题目

可以,用数学归纳法算出该试递减就可以了,适用于某些题