用矢量法证明P是三角形ABC重心的充要条件是PA PB PC=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:38:45
用矢量法证明P是三角形ABC重心的充要条件是PA PB PC=0
P是三角形ABC的边AB上的一点,试过点P作适当的辅助线,证明三角形ABC的内角和是180度.

过P点分别做BC和AC的平行线,与边AC、BC分别交于F、E两点.得角FPE=角C,角A=角BPE,角B=角APF.所以,角APF+角FPE+角BPE=180°故,三角形ABC的内角和是180度.

如图,DE是三角形ABC的中位线,用向量法证明三角形的中位线定理

三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半D、E分别是AB、AC的中点选择向量AB、向量AC为基底,则BC=AC-AB(在此表示向量,下同)AD=1/2ABAE=1/2ACDE=AE

怎么证明三角形ABC是等腰直角三角形

用四点共圆就很好证!用其他方法难度很大!∵∠ABC=∠ADC∴A、B、D、C四点共圆∴∠ACB=∠ADB=45°∵∠ABC=45°∴∠ABC=∠ACB=45°∴AB=AC,∠BAC=90°∴△ABC是

用反证明法证明,在三角形ABC中,若∠C是钝角,那么∠B一定是锐角

证明:延长CB到D点假设∠B是钝角∵∠ADB=180度-∠B∴∠ADB是锐角①又∠ADB=∠C+∠A②又∠C是钝角③由②③得∠ADB是钝角④由①④得出互相矛盾的结论∴假设∠B是钝角不成立的.∴∠B一定

用向量法证明(一)三角形三条中线共点;(二)P是三角形ABC重心的充要条件是向量PA+向量PB+向量PC=0

网上有详细的答案http://jylicai.com/netteach/cw04-05/ja/g354sxb516aa09.doc【典型例题精讲】例2

己知AM是三角形ABC中BC上的中线,用向量法证明:

设向量AB=a,向量AC=b,向量AM=c向量BM=d,延长AM到D使AM=DM,连接BD,CD,则ABCD为平行四边形则向量a+b=2c(a+b)平方=4c平方a平方+2ab+b平方=4c平方(1)

用向量法证明三角形ABC的三条中线交于一点P,并且对任意一点O有

先假设两条中线AD,BE交与P点连接CP,取AB中点F连接PFPA+PC=2PE=BPPB+PC=2PD=APPA+PB=2PF三式相加2PA+2PB+2PC=BP+AP+2PF3PA+3PB+2PC

在△ABC中,AB=AC,点P是三角形内部一点,且∠APB>∠APC.求证PB<PC(用反证法证明)

因为ab=ac所以角abc=角acb设:pb=pc所以角pbc=角pcb所以角abp=角acp所以三角形apb全等于三角形apc所以角apb=角apc所以矛盾设:BP>CP所以角pbc角acp所以co

矢量与三角形在三角形ABC中,已知矢量AB与AC满足{(AB/|AB|)+(AC/|AC|)}*BC=0,三角形ABC是

等腰三角形.AB单位向量和AC单位向量设为AM,其基线为角A角平分线,又AM垂直BC,所以,三角形为等腰三角形AB单位向量和AC单位向量,是其方向上单位模长的向量,由于模长相等,按平行四边形法则加和,

在三角形ABC中,AD是三角形ABC的外角平分线,点P是AD上任意一点,猜想AB+AC与PB+PC的关系.并证明

AB+AC"AD是三角形ABC的外角平分线"这句话注意理解,含义是AD是角A的补角的平分线.做辅助线,延长BA到E,使AE=AC,易证三角形AEP与三角形ACP全等,所以AB+AC=BE,PB+PC=

三角形ABC内任意一点P证明PA+PB+PC

错题一个,除非B是最小角,否则不一定成立.

如何用矢量法证明三角形三条高线交于一点

http://zhidao.baidu.com/question/108217408

怎么证明三角形ABC是RT三角形

假如小正方形边长是1,分别算出AB和BC及AC的边长,你会发现AB^2+BC^2=AC^2则可以得出此三角形为直角三角形

已知点p在三角形ABC所在平面内,向量PA*PB=PB*PC=PC*PA,如何证明p是三角形的垂心?

∵向量PA·向量PB=向量PC·向量PA, ∴向量PA·向量PB-向量PA·向量PC=0,∴向量PA·(向量PB-向量PC)=0, ∴向量PA·向量CB=0, ∴向量PA⊥向量CB,∴PA⊥CB.同理

三角形ABC 中,P是三角形ABC内一点,试证明:角BPC> 角BAC

解题思路:本题主要考察了三角形外角和内角的关系的相关知识点。解题过程:

p是三角形ABC内的一点,证明角BPC大于角BAC

BPC>BAC证明:延长BP交AC于D角BDC是三角形BAD的外角,则BDC〉BAC角BPC是三角形PDC的外角,则BPC〉BDC因此BPC〉BAC

在三角形ABC中,AB是最长边,P是三角形内一点,证明PA+PB>PC

PA+PB>AB下证PC一定比AC和BC中至少一个小(反证法)假设PC>AC且PC>BC以C为圆心,PC的长为半径作圆,动点P的轨迹即圆弧都落在△ABC外,与题设中P是△ABC内一点矛盾故假设不成立∴