用矩形初等变换判断下列方程组解的情况
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:10:59
(11-22-31)等价(11-20-55)等价(11-201-1)等价(10-101-1)x1=x3x2=x3所以通解为x=c(1,1,1)T再问:谢谢!你能帮我看下http://zhidao.ba
逆矩阵法解线性方程组是有条件的:方程的个数与未知量的个数一致,且系数矩阵的行列式不等于0.即使这两个条件都满足,逆矩阵法也可是(A,b)用初等行变换化为(E,A^-1b)单纯求出A^-1再计算A^-1
123451234512345000000-21110-21110-10-1-10-10-1-100-1/2-3/2-3/2第一个矩阵就化成阶梯形了0-21110000000000下面来化第二个矩阵1
用初等行变化求矩阵的逆矩阵的时候,即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的逆在这里(A,E)=1-32100-30101011-1001第2行加上第3行×3,第3行减去第1行1
动手啊,如上方程为 XA=B,若|A|≠0,则 X=B*A^(-1)=……
再答:
增广矩阵A=1-1-1232-502-1-31r2-3r1,r3-2r11-1-1205-2-601-1-3r1+r3,r2-5r310-2-1003901-1-3r2*(1/3),r1+2r2,r3
这不是矩阵方程.AB15128BA=10-4120-34302再问:是这个,我发错了,老师,不好意思,再答:矩阵方程AX=B解:(A,B)=1-20-141-2-125-3121-3r2-r1,r3+
321315323r2-r1,r3-r13210-14002行列式=-6不等于0,(或者说非零行数=3,或者说矩阵的秩=3)故矩阵可逆.
利用矩阵的初等行变换求矩阵A=(-1,0,0;0,1,2;0,2,3)的逆矩阵A的-1次方看图矩阵A=(-1,0,0;0,1,2;0,2,3)令A=-1
真不是一般的难算 都是书上的啊 简单的 好好搞
12210021-20102-21001r2-2r1,r3-2r11221000-3-6-2100-6-3-201r3-2r21221000-3-6-2100092-21r3*(1/9)1221000
因为名称不一,约化阶梯形我理解为行阶梯矩阵1.r3+r117280-536005152.解:r1-r4,r2-2r4,r4-4r40-17-60-17-60-214-1210-45r2-r1,r3-2
题目是什么?是线性代数吧?
用初等行变换来转化2-307-510320218373-2580第3行减去第1行,第1行减去第2行×2,第4行减去第2行×30-3-63-510320048-450-2-420第1行减去第4行×1.5
A=[2-1-112][11-214][4-62-24][36-979]行初等变换为[11-214][2-1-112][4-62-24][36-979]行初等变换为[11-214][0-33-1-6]
1-130-21-21-1-152r2+2r1,r3+r11-1300-1410-282r3-2r21-1300-1410000这是梯矩阵,r(A)=2.r2*(-1),r1+r210-1-101-4
第3行减去第一行为000,因此不可逆再问:不对啊?答案不是不可逆再问:不对啊?答案不是不可逆
三阶及以上的,用克拉莫法则计算量都太大,建议不要采用.楼上的乱说再答:二十年教学经验,专业值得信赖!如果你认可我的回答,敬请及时采纳,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了。