用矩阵的初等行变换法判断方程组是否有解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:10:50
用矩阵的初等行变换法判断方程组是否有解
求一道线性代数题,用矩阵的初等行变换解方程组!方程组:X1+X2-2X3=02X1-3X2+X3=0

(11-22-31)等价(11-20-55)等价(11-201-1)等价(10-101-1)x1=x3x2=x3所以通解为x=c(1,1,1)T再问:谢谢!你能帮我看下http://zhidao.ba

有关矩阵行初等变换的问题,阶梯矩阵

这时不能把λ-1除掉,均变为1;不行的话,是因为λ-1不能确定是否为零;那如果这个矩阵除了第一个元素为零,其他的都为同一个数字,这样就可以除掉,使他们为1了.(第一行的行向量乘以未知向量x,可得一个方

用矩阵的初等变换求矩阵化为标准型

1-123211-20r2-3r1,r3-r11-1205-50-1-2r2*(1/5),r3+r21-1201-100-3c2+c1,c3-2c1,c3+c2,r3*(-1/3)100010001注

用矩阵的初等变换求解矩阵方程

设题目是AXB=CA是X左边的矩阵B是右边的矩阵C是等号右边的矩阵A左乘X是交换X的行位置B右乘X是交换X的列位置A是E交换了1,2行位置得来,B是E交换了2,3列位置得来,所以:本题把矩阵C第2,3

如何利用矩阵的初等行变换判断向量组线性相关或线性无关?

m个n维列向量α1,α2,……,αm,如果m>n.{α1,α2,……,αm}必然线性相关.当m≤n时.对n行m列矩阵(α1,α2,……,αm),进行行初等变换.目标是有r列.其前r行构成的子式变成r阶

用初等行变换求下列矩阵的逆矩阵

用初等行变化求矩阵的逆矩阵的时候,即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的逆在这里(A,E)=1-32100-30101011-1001第2行加上第3行×3,第3行减去第1行1

初等行变换求矩阵的逆矩阵

(A,E)=12210021-20102-21001r2-2r1,r3-2r11221000-3-6-2100-6-3-201r3-r21221000-3-6-2100092-21r2*(-1/3),

矩阵初等行变换后的特征值?

矩阵初等行变换后,不改变的是矩阵的秩,矩阵的特征值是要改变的

用初等变换法判断矩阵是否可逆

321315323r2-r1,r3-r13210-14002行列式=-6不等于0,(或者说非零行数=3,或者说矩阵的秩=3)故矩阵可逆.

用初等变换求矩阵的秩是否只能用行初等变换?

不是的对于求秩无论行列的初等变换都可以哦~希望对楼主有所帮助,

矩阵的数乘与矩阵的初等行变换

初等变换就是变换矩阵中元素的一些方法,比如其中两行相加,相减,或称某一行乘以一个常数,矩阵的乘法乘以一个数就是你说的矩阵所有元素乘以这个常数就是乘法的结果你可能觉得乘法很直观一个矩阵乘以一个数字等于了

线性代数,矩阵的初等变换

因为|A|0∴A可逆∴AX=A+2XAX-2X=A(A-2E)X=A∵A-2E=301200110-020014002=1011-10012同样|A-2E|0∴A-2E也是可逆的∴X=A(A-2E)^

初等行变换求逆矩阵 我想问下怎么用初等变换求逆矩阵,

1-111001130102-32001r2-r1(第1行乘-1加到第2行,或第2行减1倍的第1行,以下同),r3-2r11-11100022-1100-10-201r2r3(第2,3行交换)1-11

用行初等变换求矩阵的最高阶非零子式

2-r1-r3,r1-2r30-10-1120-10-11215201r2-r10-10-1120000015201所以r(A)=2梯矩阵的非零行的首非零元位于1,2列所以A的1,2列中必有最高阶非零

矩阵的初等变换指的是矩阵的行、列变换?求矩阵的逆只能用矩阵的行变换?求矩阵的秩用矩阵的初等变换?

第一个问题,对.第二个问题,用行变换是对的,千万不要用上列变换,用了就大错特错了.另外,求逆也可以按照矩阵的逆的定义乖乖算,算出伴随矩阵,然后乘上矩阵的行列式的倒数.第三个问题,对,随便你怎么换,行和

线性代数的初等矩阵变换

11-20701-1030001-30001-3

用初等变换判断下列矩阵是否可逆

第3行减去第一行为000,因此不可逆再问:不对啊?答案不是不可逆再问:不对啊?答案不是不可逆