用能量为50ev的光子照射到光电管阴极后,测得光电流与电压的关系

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:04:03
用能量为50ev的光子照射到光电管阴极后,测得光电流与电压的关系
如图所示为氢原子的能级图.用光子能量为13.06eV的光照射一群处于基态的氢原子,可能观测到氢原子发射的不同波长的光有_

设氢原子吸收该光子后能跃迁到第n能级,根据能级之间能量差可有:13.06eV=En-E1其中E1=-13.61eV,所以En=-0.54eV,故基态的氢原子跃迁到n=5的激发态.所以放出不同频率光子种

如图所示为氢原子的能级图.用光子能量为12.09eV的光照射一群处于基态的氢原子,可能观测到氢原子发射的不同波长的光有_

因为-13.6+12.09=-1.51eV,知氢原子跃迁到第3能级,根据C23=3,知可能观测到氢原子发射的不同波长的光有3种.从n=3跃迁到n=1辐射的光子能量最大,波长最短,则△E=12.09eV

(2010•上高县模拟)用如图所示的装置研究光电效应现象,用光子能量为2.5eV的光照射到光电管上时,电流表G示数不为0

A、该装置所加的电压为反向电压,发现当电压表的示数大于或等于0.7V时,电流表示数为0,知道光电子点的最大初动能为0.7eV,根据光电效应方程EKm=hγ-W0,W0=1.8eV.故A、C正确.&nb

图示为氢原子的能级图,用光子能量为13.07ev的光子照射一群处在基态的氢原子,可能观测到氢原子发射的不同波长的光有多少

B题中13.07ev的能量为第5能级和基态的能级之差,说明电子可跃迁到第5能级,然后再由第5能级向下跃迁,总共可产生种。

氢原子的能级如图所示,已知可见光的光子能量范围约为1.62eV-3.11eV,红外线光子的能量小于1.62eV,紫外线光

A、紫外线的频率大于3.11eV,n=3能级的氢原子可以吸收紫外线后,能量大于0,所以氢原子发生电离.故A正确.   B、氢原子从高能级向n=3能级跃迁时发出的光子能量小

能级跃迁发光的问题汞原子的能级如图所示,现让光子能量为8.8eV的一束光照射到大量处于基态的汞原子上,汞原子能发出6种不

能量越高代表频率越高,波长越短.能量越低代表频率越低,波长越长.很明显能量最高的光子应该是能级4落到能级1的电子所发出的光子.(刚好为8.8eV.也正是因此,8.8eV的光子才可能把电子从基态送到能级

可见光光子的能量范围约为1.62eV~3.11eV.大量处于基态的氢原子被光子能量为12.75eV的光照射后处于激发态,

A、γ射线是原子核受到激发产生的,原子的核外电子受到激发发生跃迁不可能产生γ射线.故A错误.BCD、大量处于基态的氢原子被光子能量为12.75eV的光照射后,跃迁到第4能级,根据C24=6,知可以产生

氢原子的能级如图所示,已知可见的光的光子能量范围约为1.62eV—3.11eV,下列说法正确的是(  )

AB本题考查的是能级跃迁问题,根据能级跃迁理论,处于n=3能级的氢原子能量为-1.51eV,吸收光子的能量后均可跃迁到无穷远,紫外线频率高于可见光,故A正确;大量氢原子从高能级向n=3能级跃迁时,发出

用光子能量为13.06eV的光照射 一群处于基态的氢原子,可能观测到氢原子发射的不同波长的 光有 ▲ 种

最短的对应频率最大,根据氢原子能级公式E1-E1/n^2再问:为什么要*1.6*10^-19?再答:1eV=1.6*10^-19J,eV指元电荷经过1伏特的电势能变化

(2005•南通一模)汞原子的能级如图所示,现让一束光子能量为8.8eV的单色光照射到大量处于基态(量子数n=1)的汞原

能发出6种频率的能级一定是4能级.一束光子能量为8.8eV的单色光照射到大量处于基态(量子数n=1)的汞原子上,所以4能级的能力值是-1.6eVA、波长最长一定是能量最小的,那就是能级差最小的,应该是

光电效应的题目19.用如图所示的装置研究光电效应现象,光子能量为2.5eV的光照射到光电管上时,电流表G示数不为零;移动

A,当电压表的示数大于或等于0.7V时,电流表示数为0,说明电子的初动能为0.7ev,2.5-0.7=1.8ev;B,电键S断开后,具有初动能的电子不在受电场的阻力而反向加速,所以顺利构成回路;C,当

用能量为5.0eV的光子照射某金属表面,金属发射光电子的最大初动能为1.5eV,则该金属的逸出功为 ( ) A.

公式hv=1/2mv^2+W完全正确,逸出功W=5-1.5=3.5eV所以你是对的,答案是3.5eV

汞原子的能级如图所示,现让光子能量为的一束光照射到大量处于基态(量子数)的汞原

能发出6种频率的能级一定是4能级.波长最长一定是能量最小的,那就是能级差最小的,应该是4、3能级间的差,ABS(-2.7-(-1.6))=1.1eV频率最高一定是能级差最大的,就是1、4能级差,ABS

当用具有1.87eV能量的光子照射到n=3激发态的氢子时,氢原子吸收该光子后被电离,则电离后电子的动能为:______.

处于n=3激发态的氢原子所具有的能量为E3=E132=-1.51eV.由于1.87eV+(-1.51eV)=0.36eV>0,说明氢原子能够吸收该光子而电离,电离后电子的动能为0.36eV.故答案为:

3.7eV能量的光子照射处于n=2激发态的氢原子

以n为主量子数,忽略电子结合能,则第n层轨道能量En=-13.6eV/n².当n=2时,有E2=-13.6eV/4=-3.4eV.光子与电子的这种电离作用可理解为光电效应,被电离的电子也就是光

为什么用11eV的光子照射不能使氢原子从基态跃迁到激发态?

因为电子一次性吸收一个光子上的全部能量,一二层能级差不等于11ev,无法跃迁,所以电子不会吸收该光子能量.

氢原子的能级如图所示,已知可见的光的光子能量范围约为1.62eV-3.11eV,下列说法错误的是(  )

A、紫外线的频率大于3.11eV,n=3能级的氢原子可以吸收紫外线后,能量大于0,所以氢原子发生电离.故A正确.   B、氢原子从高能级向n=3能级跃迁时发出的光子能量小

波长为200nm的紫外线的光子能量为( )J,如果用它照射逸出功为4.8eV的金属 逸出光电子的最大初动能为( )eV

算呗波长乘频率得光速,求出频率,频率×普朗克常量=光子动能,得其能量为9.939×10的负19次方J,即第一空,转化为电子伏特为其除以1.6即6.2eV,减去克服逸出功的4.8eV,得逸出光电子的最大