用配方法化二次型f(x1,x2,x3)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:48:36
f(x1)=f(x2),表明对称轴为x=(x1+x2)/2=-b/(2a)因此有:x1+x2=-b/af(x1+x2)=f(-b/a)=a*b^2/a^2-b*b/a+c=b^2/a-b^2/a+c=
1.f=(X-1)^2-4,f最小值=-42.f=-(X^2-4X+8)=-(X-2)^2-4,f最小值=-4再问:能否详细一点
解:令x1=y1+y2,x2=y1-y2,x3=y3,x4=y4f=y1^2-y2^2+y1y3-y2y3+y3y4=(y1+y3/2)^2-(y2+y3/2)^2+y3^2y3y4=z1^2-z2^
由于f(x1)=f(x2)∴x1与x2是关于对称轴对称的两横坐标的值(因为x1,x2不等,说明两点异侧)∵x1,x2的对称轴为(x1+x2)/2∴f[(x1+x2)/2]就是其顶点的函数值了f[(x1
f(x1,x2,x3)=(x1-x2)^2+(x2-x3)^2=x1^2-2x1x2+2x2^2-2x2x3+x3^2A=1-10-12-10-11
你的变换矩阵为11001-1101行列式等于0所以这不是可逆变换配方法应该是首先把含x1的项一次处理光x1只能出现在第1项中再问:因为是不可逆变换,所以X不等于QY,所以我那样的做法不对,是这个意思吗
这题还有点意思.二次型的矩阵A=1a1a-5b1b1由(2,1,2)^T是A的特征向量得A(2,1,2)^T=λ1(2,1,2)^T即有a+4=2λ12a+2b-5=λ1b+4=2λ1解得:a=b=2
令g(x)=f(x)-[f(x1)+f(x2)]/2g(x1)=f(x1)-[f(x1)+f(x2)]/2=[f(x1)-f(x2)]/2同理g(x2)=-[f(x1)-f(x2)]/2g(x1)*g
A=011101110A+E=111111111-->111000000对应方程x1+x2+x3=0(1,-1,0)^T显然是一个解与它正交的解有形式(1,1,x)^T代入方程x1+x2+x3=0确定
我是刚刚那人,配方法得到的答案不一定是特征值,但特征值一定满足标准型,百度上好麻烦,409718728,你方便的话就加个QQ大家交流下,我也在学习中y3=x3这个应该没关系吧,我一般都是这样做的
(1)二次型的矩阵A=1t1t20101由A奇异知|A|=0.而|A|=-t^2所以t=0(2)此时A=101020101|A-λE|=-λ(λ-2)^2.所以A的特征值为λ1=0,λ2=λ3=2.对
(1)a+b+c=0,a>b>c所以a>0,b>-a/2>c所以-b/2af(x2),则f(x1)>(f(x1)+f(x2))/2>f(x2)由二次函数连续性,必存在k属于(x1,x2),使得kb>-
由已知,f的矩阵A=20000101a与B=2000b000-1相似所以2+a=2+b-1且|A|=-2=|B|=-2b所以b=1,a=0.且A=200001010的特征值为2,1,-1(A-2E)x
根据就是正定二次型的定义根据正定二次型的定义,对于任意不全为0的x1,x2……xn,有F(X1,X2,……xn)>0而题目中,很明显存在一个非0的x=[1,-1,0,0,0,...0],使F(x1,x
答案错了,要求的值其实等于涵数的极值
是的.如果a11=0,就可以这样变换出现平方项.这样变换以后就相当于a11=0了,然后配方.再类似的变换使a22=0,最后就变换成标准型.再问:如果可以直接代入,那这个二次型如何化为标准形:f(x1,
f(x1)=f(x2),所以x1x2关于对称轴对称,所以x1+x2=2x(-b/2a)=-b/a所以f(x1+x2)=f(-b/a)=c
f(x1,x2,x3)=x1^2+2x3^2+2x1x3-2x2x3=(x1+x3)^2+x3^2-2x2x3=(x1+x3)^2+(x2-x3)^2-x2^2=y1^2+y2^2-y3^2其中y1=
二次型的矩阵A=1-11-14-11-10构造矩阵(上下两块)AE=1-11-14-11-10100010001c2+c1,c3-c1(同时实施相应的初等行变换)10003000-111-101000
二次型的矩阵A=200032023对特征值2,A-2E=000012021化为000010001基础解系为(1,0,0)'.再问:请问化为000010001后是因为右下角是二阶单位阵,所以在左上角添一