由y=x^2与y^2=x^3围成的平面图形绕x轴旋转
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:46:16
联立曲线与直线得y=x2+2y=3x,解得x=1y=3或x=2y=6设曲线y=x2+2与直线y=3x,x=0,x=2所围成的平面图形的面积为A则A=∫01[(x2+2)-3x]dx+∫12[3x-(x
先画出图形再求面积.经济数学团队帮你解答.请及时评价.再问:好吧,原来求的是红色阴影的面积,一直以为是围起来的图形的全部面积-_-||
5个绝对值分别表示x到0,3,2,9,5的距离y是这5个距离的和x在2和5之间时x到0和到9距离和=9-0=9到2和到5距离和=3-2=3则x=3是,到3距离最小是0所以x=3,y最小=12
所围成的图形的面积=∫(2x-1/x)dx=(x²-ln│x│)│=9-ln3-1/2+ln(1/√2)=17/2-ln(3√2)
因为X^2-X^3=0时为交点所以X=0或X=1即围成的范围在【0.1】S面积=∫X^2-X^3=1/3X^3-1/4X^4|(0
x^2+3y^4+x+2y=1两边同时对x求导,得到:2x+3*4*y^3*dy/dx+1+2*dy/dx=0(12y^3+2)dy/dx=-1-2xdy/dx=-(1+2x)/(2+12y^3)
根据方程式可以得出方程组:3x+2y=175x-y=-2解此方程得:x=1y=7解方程不用我说了吧,2式乘2再加上1式可以解出x
由曲线y=x^2与x+y=2所围成?y=x^2与x+y=2的交点(1,1)(-2,4)S=∫(-2,1)(2-x-x^2)dx=(2x-x^2/2-x^3/3)|(-2,1)=(1-1/2-1/3)-
用定积分用定积分y=x²与y=x+2的交点为:(-1,1),(2,4)则由曲线y=x²与y=x+2围成图形的面积等于y=x+2-x²在[-1,2]上的定积分.所以:S=∫
X+Y分之X-Y等于3x=-2yX+Y分之2(x-y)减X+Y分之3X+Y=(-x-3y)/(x+y)=1
因为(x-y)/(x+y)=3,则(x+y)/(x-y)=1/3则5(x-y)(x+y)-(x+y)/2(x-y)=5*3-1/(3*2)=15-1/6=89/6
先计算y=x²与y=2x所围成的面积计算y=x²与y=2x的交点,即y=2x=x²,解方程得两交点为(0,0)和(2,4)∴S1=∫(0,2)(2x-x²)dx
y=x^2与y=根号x交点为(0,0)和(1,1)s=微积分0到1根号2-x^2=2/3x^3/2-1/3x^3|0到1=1/3
联立y=x2+2y=3x,解得x1=1,x2=2∴S=∫01(x2+2-3x)dx+∫12(3x-x2-2)dx=[13X3+2X−32X2]10+[32X2−13X3−2X]21=1
由下式,得3m=2x-y,代入上式,得x-2y=2x-y-1即2x-x-y+2y=1得x+y=1
y=x+1与y=x^2-1的交点坐标为y=x+1=x^2-1解得x=-1或2y=0或3即两个交点坐标为(-1,0)(2,3)y=x+1与y=x^2-1所围面积为S=(-1,2)∫[(x+1)-(x^2
交点时(0,0),(1,1)0
用积分的方法,对(根号x)从0到1积分,去掉积分号就是2/3乘x^(3/2)从0到1,算得2/3,再乘两倍就是4/3
显然,y=x*x,y=2-x交点是(1,1)及(-2,4)第一象限的交点是(1,1)由曲线y=x*x,y=2-x和y=0所围图形的面积包括第一象限两部分的积分从0至1积分(x^2)+从1至2积分(2-
先积y,∫∫(2x-y)dxdy=∫[0→1]dx∫[3-x→2x+3](2x-y)dy=∫[0→1][2xy-(1/2)y²]|[3-x→2x+3]dx=∫[0→1][2x(2x+3)-(