由坐标面,x=4,y=4及z=x*x y*y 1所围立体的体积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 11:09:01
这在第一褂限内由z=0得x(max)=2,所以体积=积分号(0,2)dx积分号(0,4-2x)dy积分号(0,4-x^2)dz=积分号(0,2)(16-8x-4x^2加2x^3)dx=32-16-32
画出草图分两个部分0
v=∫∫f(x,y)dσ区域D=∫(0-4)dx∫(0-4)x^2+y^2+1dy=∫(0-4)dx(x*x*y+1/3y*y+y)|(4-0)=∫(0-4)(4*x*x+76/3)dx=(4/3x^
图老是传不上,传得上的话就好,传不上追问我再问:答案对了,我想问下为什么积分区间是0到4?那个图形不是一个椭圆抛物面么,那x和y的负半轴应该也要积分啊再答:看到我画的积分区域没,是根据坐标轴是0且x=
再问:谢谢与三个坐标面围成的意思是所围图形在第一卦限对吧再答:是的,是一个顶面为z=x+y+1,底为z=0,周围为x=0,y=0和x+y=1的图形。
求由x=0y=0x+y=1围成的三棱柱的体积下底为z=0上底为z=x^2+y^2(圆锥)=∫(0,1)dx∫(0,1-x)dy∫(0,x^2+y^2)dz=∫(0,1)dx∫(0,1-x)[z](0,
所围成立体的体积=∫dx∫(2-x-y)dy=∫(2√x-x/2-x^(3/2)-2x²+x³+x^4/2)dx=4/3-1/4-2/5-2/3+1/4+1/10=11/30
以下计算的是由坐标面,平面x=0,x=2,y=0,y=2,z=0及曲面z=x²+y²+2所围立体的体积.采用二重积分法:I=(0,2)∫(0,2)∫(x²+y²
答:三重积分.∫0到1dx∫0到(1-x)dy∫0到(1+x+y)dz=1/2
见图.\x07对不起!在计算中出现失误!再发一张!()!再问:可答案是e/2-1再答:我不是对了嘛
所求体积=∫dx∫(1-x-y)dy=∫[(1-x)²/2]dx=(1/2)(1/3)=1/6.
1e^z=xyze^zz'x=yz+xyz'xz'x=yz/(xy-e^z)=yz/(xy-xyz)=z/(x-xz)类似z'y=z/(y-yz)dz=[z/(x-xz)]dx+[z/(y-yz)]d
二重积分的几何意义是曲顶柱体的体积:曲顶柱体的顶面是:z=x^2+y^2,底面区域D是xOy面内由x轴、y轴、x+y=1所围V=∫∫(x^2+y^2)dxdy=∫[0,1]∫[0,1](x^2+y^2
原式=∫dz∫dy∫xdx=∫dz∫(1/2)(1-y-z)^2dy=(1/2)∫dz∫[(1-z)^2-2(1-z)y+y^2]dy=(1/6)∫(1-z)^3*dz=(1/6)∫(1-3z+3z^
Ω为三个坐标面及平面x/2+y+Z=1所围成的区域,原式=∫zdz∫dy∫dx=∫zdz∫2(1-y-z)dy=∫z[2(1-z)^-(1-z)^]dz=∫(z-2z^+z^3)dz=[(1/2)z^
原式=∫xdx∫dy∫dz=∫xdx∫(1-x-2y)dy=∫x[(1-x)²/4]dx=1/4∫(x-2x²+x³)dx=(1/2-2/3+1/4)/4=1/48.
就用直角坐标计算再答:再问:∫(0,1)xdx∫(0,1-x)dy∫(0,1-x-y)dz我这么算怎么我算到1/8的?再答:不是被积函数是xy么再问:∫(0,1)xdx∫(0,1-x)ydy∫(0,1
Ω在XOY平面投影为:x=0,y=0,x+y=1,所围成的三角形,原式=∫∫∫(Ω)xdxdydz=∫(0→1)xdx∫(0→1-x)dy∫(0→1-x-y)dz=∫(0→1)xdx∫(0→1-x)d