由系数矩阵求基础解系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 04:48:34
x1x2...xn为基础解系的基础解则a1x1+a2x2+...anxn为其次方程的通解a1a2...an属于R
以左边为例,先把5变成1,然后-2-4能变成0,然后把3变成1,最后5就成0了.然后秩就是2,基础解系自然就出来了.建议楼主多看书,多练习,李永乐的线代讲义很不错
A分成三行行向量b1,b2,b3有b1a1=0,b2a1=0,b3a1=0b1a2=0,b2a2=0,b3a2=0转置a1Tb1T=0,a1Tb2T=0,a1Tb3T=0a2Tb1T=0,a2Tb2T
基础解系含有解向量的个数等于n-R(A)=5-2=3个
(系数矩阵)用n-r(系数矩阵)就得到你需要找的基础解系有多少个解同时,这也是你需要选取的自由未知量的个数来看这道题│12-2│,可以列出一个式子:X1=2*X3-2*X2│000││000│也就是说
(1)A-->r2+2r1,r3+3r1,r2*(1/7)12-3-207-10014-20r3-2r212-3-201-1/700000r1-2r210-19/7-201-1/700000基础解系为
Coefficient命令
|A-λE|=(2-λ)^2×(4-λ)λ=2,2,4λ=2,解(A-2E)X=0得基础解系,p1=(1,0,0)^Tp2=(0,-1,1)λ=2对应的特征向量p=k1p1+k2p2(k1,k2不同时
(1)A-->r2+2r1,r3+3r1,r2*(1/7)12-3-207-10014-20r3-2r212-3-201-1/700000r1-2r210-19/7-201-1/700000基础解系为
一定要行变换,因为行变换相当于方程组的加减乘除,你想象一下方程组列方向运算能行么?要快速得到基础解系我觉得没什么快速的办法,最好就是写出来,不容易出错.要快的话你就心算吧.特别是非齐次线性方程组算导出
好好看看线性代数!自己动手丰衣足食.
判断解的情况,化行阶梯形求解时应该化成行最简形!区别:行阶梯形对应的同解方程组必须回代才能得最终解行最简形对应的同解方程组可直接得解.其实由行阶梯形化成行最简形就是完成了回代的过程
求矩阵A的特征多项式的系数方法有:1.求矩阵A的特征多项式的系数是各级所有行列式之和.2.|λE-A|展开或用韦达定理的推广即求出|λE-A|=0的根λ的i次方的系数是:所有任意i个不同的根乘积之和.
把矩阵求阶梯型第二行加到第一行第三行加到第四行第二行的-1倍加到第三行变成0000三行为0有3个自由未知量所以ζ1=(2,1,1,0)1-1-11ζ2=(0,1,0,1)0000ζ3=(0,0,1,1
最简行矩阵的每一行对应一个方程,方程中未知量的系数就是此行的数比如0102对应方程x2+x4=00013x3+3x4=0有疑问请消息我或追问满意请采纳^_^再问:此行的数是什么意思?还是不懂啊,x2+
系数矩阵=32-2106452396032经初等行变换化成行简化梯矩阵--过程略,12/301/32/900101/300000--重点在这--非零行的首非零元所在列对应的未知量是约束未知量:x1,x
对某个特征值λ,解齐次线性方程组(A-λE)X=0
方程不给出没法求到底是齐次还是非其次
A是一个n阶方阵,r(A)=n-1所以AX=0的基础解系的解向量的个数为1又A的每一行元素加起来均为1则A(1,1,...,1)^T=(1,1,...,1)^T所以x=(1,1,...,1)^T是AX