in(1 tanx)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:28:56
如果是求定积分的话就好了∫[0,π/4]ln(1+tanx)dx换元π/4-t=x=-∫[π/4,0]ln[1+(1-tant)/(tant+1)]dt==∫[0,π/4]ln[2/(tant+1)]
=∫(cosx+sinx)dx=∫cosxdx+∫sinxdx=sinx+(-cosx)+c=sinx–cosx+c
题没写清楚的哈
分母提出sinxsinx,1/sinxsinx=-d(cotx)剩余的用三角恒等式可以化为=cotxcotx/1+2cotxcotx换元令u=cotx,则原式=-∫uu/1+2uudu.再问:太厉害了
∫dx/1+tanx=∫(cosx/(sinx+cosx))dx=A令B=∫(sinx/(sinx+cosx))dx则A+B=∫dx=x+CA-B=∫((cosx-sinx)/(sinx+cosx))
∫[0,π/4]ln(1+tanx)dx换元π/4-t=x=-∫[π/4,0]ln[1+(1-tant)/(tant+1)]dt==∫[0,π/4]ln[2/(tant+1)]dt=∫[0,π/4]l
∫1/tanxdx=∫cosx/sinxdx(令u=sinx,du=cosxdx)=∫cosx/u*du/cosx=∫(1/u)du=ln|u|+C=ln|sinx|+C_______________
由已知得dy/(1+y)=dx/tanx两边求积分得到ln(1+y)=lnsinx+C1因此原微分方程的解是1+y=Csinx
记P=∫1/(1+(tanx)^2000)dx,P=∫(0_pi/4)1/(1+(tanx)^2000)dx+∫(pi/4_pi/2)1/(1+(tanx)^2000)dx=∫(0_pi/4)1/(1
∫1/(1+tanx)dx=∫1/(1+sinx/cosx)dx=∫cosx/(cosx+sinx)dx=∫cosx(cosx-sinx)/(cosx+sinx)(cosx-sinx)dx=∫(cos
原式=∫(tan²x+1)(tan²x-1)dx=∫sec²x(tan²x-1)dx=∫(tan²x-1)dtanx=tan³x/3-tan
再答:���벻����������Ŀֱ��չ�����Ϳ����ˡ�
令t=tanx原式=∫1/[(1+t)(1+t^2)]dt=(1/2)∫1/(1+t)dt-(1/2)∫(t-1)/(1+t^2)dt=(1/2)ln|1+t|-(1/2)∫(t-1)/(t^2+1)
再问:能不能用万能公式做一下再答:
原式=∫(sinx)^2/(cosx)^2dx=∫(sinx)^2(secx)^2dx=∫(sinx)^2dtanx=(sinx)^2tanx-∫tanxd(sinx)^2=(1-cosx^2)tan
?再问:不定积分。。。
如图:
1.∫(tanx+x)dx=∫tanxdx+∫xdx2.∫tanxdx,令u=cosx,du=-sinxdx.∫tanxdx=-ln|cosx|+C.3.∫xdx=x^2/2+c4.∫(tanx+x)