in(1-x),x sinx,x 1=x.1-cosx中那个与x是等价无穷小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:08:22
in(1-x),x sinx,x 1=x.1-cosx中那个与x是等价无穷小
cos1/xsinx-1/xsinx,x趋近0时的极限

原式=limsinxcos(1/x)-limsinx/x前一个是无穷小乘有界函数,还是无穷小,后面是重要极限等于1所以原式=0-1=-1

lim (1/(xsinx)-1/x^2)x~0

lim(1/(xsinx)-1/x^2)=lim[x-sinx]/[x²sinx]=lim[x-sinx]/x³=lim[1-cosx]/3x²=limsinx/6x=1

X->0 (sinx)^2/(1-cosx+xsinx) 的极限

分子分母倒一下lim[x→0](1-cosx+xsinx)/sin²x=lim[x→0](1-cosx+xsinx)/x²=lim[x→0](1-cosx)/x²+lim

lim(x→0)(1-cosx)/(xsinx)=?

lim(x→0)(1-cosx)/(xsinx)=lim(x→0)(1-(1-2(sinx/2)^2)/(xsinx)=(1-(1-2*x^2*(1/2)^2))/x^2=1/2

lim(x→0) sinx-x(x+1)/xsinx

用2次罗比达法则lim(x→0)sinx-x(x+1)/xsinx=lim(x→0)(cosx-2x-1)/(sinx+xcosx)=lim(x→0)(-sinx-2)/(2cosx-xsinx)=(

lim x→0 1-cosx/xsinx

x→0时,运用等价无穷小,即1-cosx~x^2/2(1-cosx等价于x^2/2,在乘除中可以直接替换)sinx~x(同理,在乘除中可以直接替换)于是原式=(x^2/2)/(x*x)=1/2

求极限x趋向于0 (1-cos2x)/xsinx

lim(x→0)(1-cos2x)/xsinx=lim(x→0)(x^2/2)/x^2=1/2

2.5计算极限lim(x→0) (1-cos2x)/xsinx

cos2x=1-2sin²x(1-cos2x)/xsinx=[1-((1-2sin²x)]/xsinx=2sin²x/xsinx=2sinx/xlim(x→0)(1-co

lim(x→0)(1-cos2x)/xsinx

1-cos2x=2sin²x(1-cos2x)/xsinx=2sinx/xlim(x→0)=2lim(x→0)sinx/x=2

1-√cosx/xsinx 求Lim X趋向于0

lim(x->0)1-√cosx/xsinx=lim(x->0)1-√cosx/x²=lim(x->0)(1-√cosx)(1+√cosx)/(1+√cosx)x²=lim(x->

lim(x趋向0)(1-cos2x)/xsinx怎么解?

lim(x趋向0)(1-cos2x)/xsinx=lim(x趋向0)[(1-1+2Sin^2(x)]/xsinx=lim(x趋向0)2sin^2x/xsinx=lim(x趋向0)2sinx/x=2

X趋向0 lim(xsinx)/(1-cosx)

X趋向0lim(xsinx)/(1-cosx)=X趋向0lim(xsinx)(1+cosx)/(1-cos^2x)=X趋向0limx(1+cosx)/sinx)=X趋向0lim(1+cosx)[x/s

lim(x~无穷)xsin1/x-1/xsinx

能写清楚点卟.再问:xsin(1/x)-(1/x)sinx,,x趋向于无穷的极限再答:原式=x*1/x-sinx/x=1-0=1ps;(对于sinx/x.由于sinx为有界函数。故当x趋近于无穷大时s

:lim(xsin1/x+1/xsinx)x趋于0

答案是1.lim(x→0)[xsin(1/x)+(1/x)sinx]=lim(x→0)xsin(1/x)+lim(x→0)sinx/x,前面一项是(0×有界函数),等于0=0+1=1

计算lim xsinx (e^1/x -1) x->∞

你的这种思路完全正确.如果是我也会这样解题.这是不易出错的解法.他给的答案是用到洛必达法则.即0/0时同时对分子和分母求导.其实第二步用变量代换u=1/x会更容易一些.

求 √xsinx(√1-e^x)的导数?

那就是你的问题了,根号应该加个括号啊ln|y|=ln|√[xsinx√(1-e^x)]|=1/2*ln|xsinx√(1-e^x)|=1/2*[ln|x|+ln|sinx|+1/2*ln|e^x-1|

f(x)=1-xsinx的导函数如何求

f'(x)=1′-x′sinx+xsin′x=-sinx+xcosx

lim(x→0)(1-cos4x)/xsinx

点击图片就可以看清楚,加油!

lim(x→0)x/(xsinx)=0和lim(x→0)(xsinx)/x=1

都错lim(x→0)x/(xsinx)=lim(x->0)1/sinx=无穷大lim(x→0)(xsinx)/x=lim(x->0)sinx=0