In(x-2t)dt
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:44:00
不太看得懂你的问题,你应该想问积分上限函数吧(变限积分)?运用原函数存在定理即可,d/dt∫[x^2→0](sint/t^2)+1dt=[d/dt∫[u→0](sint/t^2)+1dt]*(x^2)
letdF(x)=e^(-x^2)dxf(t)=∫(1->t^2)e^(-x^2)dx=F(t^2)-F(1)f'(t)=2tF'(t^2)=2te^(-t^4)∫(0->1)tf(t)dt=(1/2
dx=(t*2-1)dt;∫dx=∫(t*2-1)dt;则x=∫t*2dt-∫dt;X=1/3t3-t
答案如图.
φ(x)=∫(0~2x)t(e^t)dt=[te^t-e^t+C](0~2x)=2xe^(2x)-e^(2x)+1φ'(x)=[2xe^(2x)-e^(2x)+1]'=2e^(2x)+2x*2*e^(
f(x)=∫(1→x²)e^(-t)/tdtf'(x)=2x·e^(-x²)/x²=2e^(-x²)/xf(1)=0,∵上限=下限∫(0→1)xf(x)dx=∫
第一题:令f(x)=y方便计算对方程直接求导得y的导数为1.则令y=x+a代入原方程得x+a=x+2∫(0,1)(t+a)dt化简方程得a=1+2a求得a=-1所以y=x-1第二题:先化简方程∫(0,
dy/dx=(dy/dt)*(dt/dx)=1/e^t*(dy/dt)d^2y/dx^2={d[1/e^t*(dy/dt)]/dt}*(dt/dx)=(1/e^t)*(d^2y/dt^2-dy/dt)
F(x)=∫[0,x](x^2-t^2)f(t)dt=x^2∫[0,x]f(t)dt-∫[0,x]t^2f(t)dtF'(x)=2x∫[0,x]f(t)dt+x^2f(x)-x^2f(x)=2x∫[0
这个原函数不是初等函数,写不出来
这个题目吧,很把f(t-x)中的x分离出来令t-x=ydt=dyt=0,y=-xt=x,y=0g(x)=∫[-x,0](x+y)^2f(y)dy=x^2∫[-x,0]f(y)dy+2x∫[-x,0]y
t=x-udt=d(x-u)=-du没错应该是dt=-du再问:����-du�������������Ǹ��ģ��ο���������ġ�再答:Ӧ���Ǹ��ġ������
利用洛比达法则.x-->0lim[∫cos(t^2)dt]/x=x-->0limcos(x^2)=1
dx/(x+t)=dtdx=(x+t)dtx=(1/2*x^2+tx)dtxt=1/2*x^2t+1/2t^2x1=1/2(x+t)x=2-t
你这题目有问题∫[a,x]tf(t)dt的导数就是xf(x)再问:∫[0,x]tf(t)dt的积分才是xf(x),但是现在下线不是0,是a.再答:你去看看莱布尼兹公式,下限时任意常数再问:我知道莱布尼
利用洛必达法则.即当分子和分母都趋于无穷小时,同时对分子和分母求导数原式=lim(X趋向于0)[2*∫(0到x)e^(t^2)*dt*e^(x^2)]/[x*e^(2*x^2)]=2*lim(X趋向于
罗比达法则=x(x-sinx)/2x^4=(x-sinx)/2x^3=[x-(x-x^3/3!+o(x^3))]/2x^3=1/12再问:(x-sinx)/2x^3=[x-(x-x^3/3!+o(x^
lim(x→0)[∫上x下0cos(t²)dt]/x=lim(x→0)cos(x²)0/0型,用洛比达法则=1lim(x→0)[∫上x下0ln(1+t)dt]/(xsinx)=li
求导即可f(x+1)=2x-4f(x)=2x-6
y=∫(t-1)^3(t-2)dt,dy/dx=(x-1)^3(x-2).