直三棱柱abc-a1b1c1中,ab=ac=aa1=2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:05:30
直三棱柱abc-a1b1c1中,ab=ac=aa1=2
如图,已知在直三棱柱ABC-A1B1C1中,D,E,分别是棱AB,BB1的中点,

△CDE的面积不等于CD*DE/2吗CD垂直于平面ABB1A1,所以CD垂直于DE

在直三棱柱ABC—A1B1C1中,AB=2,AC=AA1=2倍根号3,

1.∵直三棱柱,∴AA1⊥AB又∵∠ABC=60,根据正弦定理可以得出∠ACB=30°∴∠CAB=90°∴AB⊥AC∴AB⊥面A1AC∴AB⊥A1C2.可得A1B=BC=4设A1C中点M,则BM⊥A1

已知直三棱柱中在直三棱柱ABC—A1B1C1中,AB=BC=BB1,D为AC的中点,求证:

设A1D∩AC1=E,∵AC1⊥平面A1BD,且A1D∈平面A1BD,∴AC1⊥A1D,在平面ACC1A1上,∵

如图,直三棱柱ABC?A1B1C1中,AC?AB ,AB?2AA1,M是AB的中点,△A1MC1

再答:再答:再答:再答:本题考查两条线段的比值的求法,考查角的余弦值的求法,解题时要认真审题,注意空间思维能力的培养.再答:分析(1)取BC中点N,连结MN,C1N,由已知得A1,M,N,C1四点共面

在直三棱柱ABC——A1B1C1中,AB=1,AC=AA1=根号三,∠ABC=60°,求证AB⊥A1C.

解三角形ABC,求得AB⊥AC,由于是直三棱柱,所以AB⊥AA1,AB垂直于面AA1C1C,所以,AB⊥A1C

直三棱柱ABC-A1B1C1中,BC1⊥AB1,BC1⊥A1C,求证:AB1=A1C

在AA1B1B面上的A1点做A1F平行AB1,BC1垂直与AB1,也就垂直A1F同时BC1垂直A1C,所以BC1垂直面FA1C,所以有FC垂直BC1,在直三棱柱ABC——A1B1C1中,BB1垂直面A

在直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.

直角三角形ADB,AD=根号3,AB=2可计算得出A1A=2√3这就是三棱锥的高因为AD⊥A1BC,所以AD⊥BC因为AA1⊥ABC,所以AA1⊥BC所以BC⊥AA1B,所以BC⊥AB三角形BCP面积

如图,已知在三棱柱ABC-A1B1C1中

改用向量的方法,ef与A1B1没有直接联系必须借助其他的东西来证明

在正三棱柱ABC-A1B1C1中,侧棱长为2

取AC的中点E,连接BE,C1E,∵正三棱柱ABC-A1B1C1中,∴BE⊥面ACC1A1,∴∠BC1E就是BC1与侧面ACC1A1所成的角,BC1=3,BE=32,∴sinθ=12,θ=30°.故答

在直三棱柱ABC-A1B1C1中

过B作AC垂线交于D,连接C1D,角BC1D即为所求.tanBC1D=二分之根号三/二分之根号十七,再求反函数.

直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形

1.(1)延长平面BCC1B,作CM‖BC1,交B1C1延长线于M,则A1CM就是直线BE和A1C所成的角,AC=2a,AB=BC=√ 2a,BC1=√(BC^2+CC1^2)= 

在直三棱柱ABC-A1B1C1中(即侧棱垂直于底面 的三棱柱),角ACB=90,AA1=BC=2AC=2

存在点D满足AD=√2时能够使得二面角B1-CD-C1的大小为60°图就不画了你自己画一下吧百度现在一传图就很容易通不过审核.假设存在符合题意的D,设AD=x则CD=√(1+x²)从C1向C

急需立体几何帮助! 如图所示,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°

连A1B,沿BC1将△CBC1旋转与△A1BC1在同一个平面内,连A1C,则A1C的长度就是所求的最小值.通过计算可得ÐA1C1B=90°,又ÐBC1C=45°,\ÐA1

直三棱柱ABC-A1B1C1中,B1C1=A1C1,AC1垂直A1B,M,N分别是A1B1,AB的中点

(1)证法一:由直棱柱性质得AA1⊥平面A1B1C1,又∵C1M平面A1B1C1,∴AA1⊥MC1.又∵C1A1=C1B1,M为A1B1中点,∴C1M⊥A1B1.

在线等直三棱柱ABC-A1B1C1中,已知AB=3,AC=2,CAB=60度,AA1=5,求直三棱柱的体积

底面三角形的面积用1/2两条邻边的长的乘积再乘上夹角的正弦值(这个公式学过吗?)然后再乘高就是体积了

【速,追加哦~】在直三棱柱ABC—A1B1C1中.

用向量好了?总学过吧?以b为坐标原点.bb1abbc为xyz轴然后把坐标表示出来1证cd与面中两条边的数量积等于0第二问求两个面的法向量然后套公式就行了

已知在直三棱柱ABC-A1B1C1中

(1)连接AC1交A1M于N点∵角ACB=90度,角BAC=30度,BC=1AA1=√6M是CC1的中点∴CM=√6/2AC=√3=A1C1CC1=AA1=√6∴cotCAC1=cotC1MA1=√2

如图,在直三棱柱ABC-A1B1C1中,底面ABC是直角三角形,角ABC=90°,BC=BB1

1),直三棱柱ABC-A1B1C1,底面ABC是直角三角形,角ABC=90°>>>A1B1⊥BB1,A1B1⊥C1B1>>>A1B1⊥平面BB1C1C再问:第二问再答:因为BC=BB1,四边形BCC1

在直三棱柱A1B1C1-ABC中,BC=CC1 ,当底面△A1B1C1满足条件----时,有AB1⊥BC1?

当然不可以了,“底面△A1B1C1满足什么条件?”应填A1B1=A1C1再问:“底面△A1B1C1满足什么条件?”说明什么了?再答:上次考虑欠周密。应填A1C1⊥B1C1。“底面△A1B1C1满足什么