直线y=kx 1与椭圆x² 5 y² m=1恒有公共点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:33:39
缺了条件,焦点应该在x轴上.(1)离心率e=c/a=√3/3=1/√3∵c=1,∴a=√3∴b=√2∴方程为x²/3+y²/2=1(2)设A(x1,y1),B(x2,y2)将y=-
易知直线y=kx-2恒过定点(0,-2),因为该椭圆焦点在x轴上,所以有0<m<5①,由直线与椭圆恒有公共点得,点(0,-2)须在椭圆内或椭圆上,所以025+(−2)2m≤1,解得m≥4②,综①②,得
直线y=kx+1恒过点(0,1),直线y=kx+1与椭圆恒有公共点所以,(0,1)在椭圆上或椭圆内∴0+1m≤1∴m≥1又m=25时,曲线是圆不是椭圆,故m≠25实数m的取值范围为:m≥1且m≠25&
y=kx-1代入椭圆方程得:x^2/9+(kx-1)^2/4=14x^2+9k^2x^2-18kx+9=36(4+9k^2)x^2-18kx-27=0它的判别式为:324k^2+108(4+9k^2)
解题思路:本题考查直线与椭圆的位置关系,考查椭圆的切线方程,考查面积的计算,考查学生分析解决问题的能力,有难度.解题过程:
相交啊,直线衡过(1,1)点.代入椭圆得值小于1说明该点在椭圆里.所以无论k为什么都有交点!
将直线y-kx+2代入椭圆方程中,得:x^2/2+(kx+2)^2=1.x^2/2+k^2x^2+4kx+4-1=0.(k^2+1/2)x^2+4kx+3=0.判别式△=(4k)^2-4*(k^2+1
把y=kx+3带入椭圆方程,求出根的情况,有两解就是相交,一解相切,无解相离
设直线l与椭圆的交点坐标为M(x1,y1),N(x2,y2),由y=kx+1x22+y2=1消去y得(1+2k2)x2+4kx=0,所以x1+x2=−4k1+2k2,x1x2=0,由|MN|=423,
已知直线y=kx+2与椭圆2x^2+3y^2=6,当k为何值时,此直线与椭圆相交?相切?相离将y=kx+2代入方程2x²+3y²=6有2x²+3(kx+2)²=
椭圆焦点为F1(-1,0),F2(1,0),直线AB的方程为y=2(x-1),代入椭圆方程得x^2/5+(x-1)^2=1,化简得6x^2-10x=0,解得x1=0,x2=5/3,所以A(0,-2),
很简单的方法:直线y=kx-1通过变形有(y+1)/(x-0)=k则该直线必经过点(0,-1)而该点就在椭圆x/9+y/4=1的内部,直线y=kx-1与椭圆x/9+y/4=1必定相交于两点.
直线代入椭圆方程:2x^2+(kx-2)^2=1→(2+k^2)x^2-4kx+3=0#(2+k^2)>0这必定是个二次方程(1)有两个不同的公共点;Δ=16k^2-4*3*(2+k^2)=4k^2-
答:直线y=kx-k+1y-1=k(x-1)恒过点(1,1)代入椭圆方程:x²/9+y²/4=1得:1/9+1/4
令椭圆的左、右焦点分别是F1、F2.由椭圆方程x^2/5+y^2=1,得:椭圆以原点为中心,两坐标轴为对称轴,且a=√5、c=√(5-1)=2.∵AB⊥x轴,∴A、B关于x轴对称,∴AF2=AB/2.
设所求方程为3x+2y+C=0,与椭圆方程联立可得x^2/10+(-3x-C)^2/20=1,化简得11x^2+6Cx+C^2-20=0,因为直线与椭圆相切,因此判别式=36C^2-4*11*(C^2
相交应为直线过定点(1,1)在椭圆内所以不管斜率如何变化总是与椭圆相交