直角三角形中30°的角所对的直角边等于斜边的一半证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:18:15
直角三角形中30°的角所对的直角边等于斜边的一半证明
1,直角三角形中,30°的角所对的边是( ) 2,直角三角形中,是斜边的( )的直角边所对的角是( )

1,直角三角形中,30°的角所对的边是斜边的一半2,直角三角形中,是斜边的一半的直角边所对的角是30°

已知直角三角形中30°角所对的直角边长是23

∵∠C=90°,∠B=30°,AC=23,∴AB=2AC=43,由勾股定理得:BC=AB2−AC2=6,故答案为:6cm.

在一个三角形中,一个角为30°,它所对的边为斜边的一半.求这个三角形为直角三角形

题外话:我记得我读书时这题是书上的例题,不知现在书上还有没有这,楼上两位用正弦定理做出来没有错,记得当时还没有学正弦定理,也不知道SIN90和SIN30这个概念,特做如下讲已知在三角形ABC中,角A为

请写出定理“在直角三角形中,30°角所对的直角边是斜边的一半”的逆命题,判断逆命题的真假,并证明.

楼上别扯淡了~您老整的题目就是原来的命题啊~逆命题:“在一个三角形中,如果有一个角是30°,且这个角所对的边是其一条邻边的一半,那么这个三角形是直角三角形,这条邻边为斜边.”(差不多吧……好久没做这样

证明直角三角形中,30度角所对的直角边等于斜边的一半是真命题

逆命题:直角三角形中,如果一条直角边所对的角为30度,那么这条直角边等于斜边的一半.真命题,证明如下:设三角形为ABC,角C为90度,角A=30度,则角B=60度,连接C斜边的中点D,则CD=1/2A

怎样证明直角三角形中,30度角所对的直角边等于斜边的一半是真命题

作一条辅助线,找到斜边AB的中点D.连接CD.之后你就会了,

在直角三角形中,30°所对的直角边是斜边的一半,如图,把含有30°角的三角板ABO置入平面直角坐标系

解①当点P在线段AO上时,过F作FG⊥x轴,G为垂足∵OE=FG,EP=FP,∠EOP=∠FGP=90°,∴△EOP≌△FGP,∴OP=PG,又∵OE=FG=33t,∠A=60°,∴AG=FGtan6

在直角三角形中 30度角所对直角边是斜边的一半 判断逆命题的真假

真在三角形ABC的斜边上取点D,使得角CBD=30度又角B=90度,所以角ABD=60度因为角A=角ABD=60度,所以三角形ABD为等边三角形所以AB=AD又因为角C=角CBD=30度所以三角形BC

直角三角形中30°角所对直角等于斜边一半的逆定理如何证明?

直角三角形中30°角所对直角等于斜边一半的逆定理为:如果直角三角形中一直角边是斜边的一般,那么这条直角边所对的角等于30度.证明: 如图,三角形ABC是直角三角形,AB是斜边,D是AB的中点

证明:直角三角形中,30°的角所对的边等于斜边的一半.

证明:如图,延长BC到D,使CD=BC,在△ABC和△ADC中,AC=AC∠ACB=∠ACD=90°BC=CD,∴△ABC≌△ADC(SAS),∴AB=AD,∵∠BAC=30°,∴∠B=90°-30°

已知30度直角三角形中30度角所对的边长为2cm,求另两边长

直角三角形,三个角90度、60度,30度.直角所对边长为4,然后根据X平方+Y平方=Z平方(Y是斜边长,X^2+Y^2=Z^2),得出最后一边为2倍根号3

怎证明在直角三角形中,30度角所对的直角边是斜边的一半.

很简单呀.给我追加10分就好在三角形ABC的斜边上取点D,使得角CBD=30度又角B=90度,所以角ABD=60度因为角A=角ABD=60度,所以三角形ABD为等边三角形所以AB=AD又因为角C=角C

直角三角形中30度角所对的直角边等于斜边的一半与勾股定理相矛盾

依题意:c=2b,a²+b²=c²,把c=2b代入a²+b²=c²得:a²+b²=(2b)²=4b²

怎么证明“在直角三角形中,30度角所对的直角边是斜边的一半”的逆命题

过A作AD⊥BC于点D,∵∠B=30°,∴AD=1/2AB=AC,根据垂线段最短可知AD与AC重合,因此∠C=90°

在直角三角形中,如果一个角等于30度,则它所对的-----------边等于--------------边的一半

在直角三角形中,如果一个角等于30度,则它所对的直角边等于斜边的一半楼主初二还是初一?

已知直角三角形中30°角所对的直角边等于斜边的一半,∠C=90°,∠B=15°

很容易知道Rt△ABC∽Rt△DBE,所以ED/BD=AC/AB=AC/(AE+EB),而E点是AB的中点(垂直平分线),故上式=AC/2BE,即ED/BD=AC/2BE.ED=BD*sin15,BE

直角三角形的定理证明1、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半; 2、在直角三角形中

1.2.两题都可以再等三角形中进行证明.作等边三角形一边上的高,由三线合一就可以证明了.3.在圆中,直径所对的角是直角,这时直角三角形的斜边就是直径,斜边上的中线就是半径,即中线等于斜边的一半