相似变换矩阵p怎么求
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:55:39
A=(-1,-2,6;-1,0,3;-1,-1,4).特征值λ=1,1,1(|λE-A|=λ³-3λ²+3λ-1).可以取P=-120013011即有P^(-1)AP=J=1001
P1是第一次行变换的矩阵,是把单位阵E施行与A相同的第一次行变换得到的,P2是第二次行变换矩阵.再问:那A的第一次变换是怎么变的,单位阵用2阶还是3阶啊??再答:A是2×3矩阵,左边乘以一个方阵,该方
令P=(p1,p2,p3)则AP=(Ap1,Ap2,Ap3)=Pdiag(a,b,c)=(ap1,bp2,cp3)所以Ap1=ap1Ap2=bp2Ap3=cp3这样就可知特征值,特征向量,可逆矩阵P,
首先算出A的特征值是4,4,4,然后A-4I=-121000-121所以J应该有一个一阶块和一个二阶块假定P=[p1,p2,p3],J=400041004那么(A-4I)P=P(J-4I),可以知道p
matlab里面有专门求一个矩阵Jordan标准形的函数以及期中的变换矩阵P的函数(A*P=P*J)首先输入第一个矩阵:A=[a,b,c;d,e,f,g;i,k,j](以33为例)方法有两种:数值方法
|A-λE|=1-λ0101-λ1112-λr1-r21-λ-(1-λ)001-λ1112-λc2+c11-λ0001-λ1122-λ=(1-λ)[(1-λ)(2-λ)-2]=(1-λ)(λ^2-3λ
|A-λE|=(5-λ)(1+λ)^2.所以A的特征值为5,-1,-1(A-5E)X=0的基础解系为:a1=(1,1,1)'(A+E)X=0的基础解系为:a2=(1,-1,0)',a3=(1,0,-1
P^(-1)AP=D(对角阵),A=PDP^(-1),A^k=(PDP^(-1))^k=PDP^(-1)PDP^(-1)...PDP^(-1)=PD^kP^(-1),然后按顺序计算D^k,PD^k=B
(B)正确2.(C)正确因为ABC=E,即A(BC)=E.故A与BC互逆,所以BCA=E3,((D)正确A,B,C都是相似的必要条件,但都不充分在可对角化的前提下相似的充要条件是特征值相等n个特征值不
先用行变换,从左到右逐列处理比如111112341342r2-r1,r3-r1111101230231r3-2r21111012300-1-5这是梯矩阵此时用列变换c2-c1,c3-c1,c4-c11
1-111001130102-32001r2-r1(第1行乘-1加到第2行,或第2行减1倍的第1行,以下同),r3-2r11-11100022-1100-10-201r2r3(第2,3行交换)1-11
正交矩阵不一定是单位矩阵,但单位矩阵是正交矩阵矩阵正交的充分必要条件是其列向量是标准正交向量组,故必须正交化,单位化
问题表达不是很清楚,建议百度一下“矩阵的Jordan标准形”再问:也就是N阶矩阵,没有N个线性无关的特征向量,不可以相似对角化,它存不存在相似矩阵?再答:存在P^{-1}AP都是与A相似的,相似标准形
第二行乘以1/2,加到第一行再问:лл ������������ ��������������ô��⣿��
A的特征值为2,2,4A-2E=011003002-->010001000所以属于2重特征值2的线性无关的特征向量只有1个所以A不能相似于对角矩阵
这个写起来好麻烦啊,这个是真正的解法,但是我一直举得,求出了前两个,第三个向量,我觉得可以直接用两个向量叉乘一下得出,反正第三个向量和前两个垂直
把λ=1代入方程组(A-λE)X=0中,得到该方程组的系数矩阵为12-212-224-4→000-2-44000所以,这时,方程组与方程x1+2x2-2x3=0(x2,x3为自由未知量)同解,因此,令
5(2)A=1-2224-42-44|λE-A|[λ-1,2,-2][-2,λ-4,4][-2,4,λ-4]=(λ-1)*(λ^2-8λ)特征值:λ=0,λ=1,λ=8求对应的特征向量,再经正交化、单
是的需注意的是对角矩阵中主对角线上的元素(特征值)与正交矩阵的列(特征向量)的顺序是对应的