相关分析中sig
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:16:48
常数项的显著性水平不是很关键,X各项的才是重要的,以你列出的显著性水平看好像这些模型是都不能用呀一共只有四个自变量吗那你就先构造包含四个自变量的回归方程,先去掉最不显著的,应该是X1从你的模型看你对逐
相关系数是不能确定因果关系的,比如一个人想知道身高与体重是否有关系才做相关分析.你想做的可能是简单一元回归分析,看自变量和哪个因变量拟合.有什么问题call我QQ409500841
常量sig值高于0.05这个回归仍然有效,这仅仅表明线性回归的截距项可以被设定为0,也就是经过原点.但是,如果你将截距项设为0,则该方程的拟合优度指标值(R的平方)将是不准确的,即使你重新拟合.再问:
重复次数不够,导致误差自由度为-
前者是皮尔逊双侧检验的概率,所以选前者.具体选择单侧还是双侧,请参考以下标准:A.甲乙两个总体有差别时,甲高于乙或乙高于甲的可能性都存在,则选双侧检验B.在根据专业知识,只有一种可能性,则选单侧检验C
是的,例数太少再问:怎么增加试验重复数?是1-9号多做几次吗?然后用SPSS怎么分析?再答:这个要用spss生成正交表做分析的再问:不会啊!请说详细点步骤及方差分析
原假设是“X1的系数为0”,sig值低于0.05就可以拒绝原假设啦再问:也就是说,原假设是x1的系数为0,而不是我自己设置的那个假设吧?我都晕了一下午了。。。如果是我自己设置的假设,那就互相矛盾了再答
置信水平是人为规定的,通常选择0.05或者0.01,在双侧检验中,如果sig小于置信水平的一半则拒绝零假设,如果sig大于置信水平的一半则接受零假设.在单侧检验中,sig小于置信水平则拒绝零假设,大于
F检验说明你的众多自变量和你的因变形是有显著性影响的,可以做回归分析.但是并不是说每一个自变量都和因变量有显著性影响,所以要对每一个自变量T检验,T检验不合格说明该自变量对因变量没有显著性影响,一般做
常数项是否检验有争议,多数学者倾向于不对常数项检验.可以把常数项的复选框去掉再做一遍看看结果会不会更漂亮
是显著的,没什么好理解的如果没法理解kendall系数,干脆就让人帮你做分析我经常帮别人做这类的数据分析的
造价是把?不建议造价,不是因为道德原因,而是造假太费功夫,很费时间,非专业人士不能做我经常帮别人做这类的数据分析的
说明变量没有意义哦,你可以选几个变量纳入进去分析试试再问:先做“要因分析”,然后以分析出的“要因1,2,3,4”为变量进行回归分析。结果,“要因1”sig为零,“要因2,3,4”sig值却都严重偏大!
F是组方差值,sig是差异性显著的检验值,该值一般与0.05或0.01比较,若小于0.05或者0.01则表示差异显著df是自由度一般的sig没有特别注明的都是指双侧检验,如果特别注明有单侧,那就是单侧
这样好.系数为零的原假设很难成立.
看你的目的了你如果只是要看这些自变量之间的相关性,那就这样就可以了.如果你要将自变量进行主成分分析,那相关性高就适合做因子分析如果你要将自变量与因变量构建模型,那自变量的相关性高,说明共线性严重,需要
的正负表示的是两变量直线相关的方向,绝对值大小表示相关的密切程度,越接近1,相关密切程度就越高,r值大于零为正相关,sig即概率P,为0.000表示有统计学意义,故可以认为两个变量之间具有正相关关系.
logistic回归模型,主要是用来对多因素影响的事件进行概率预测,它是普通多元线性回归模型的进一步扩展,logistic模型是非线性模型.比如说我们曾经做过的土地利用评价,就分别用多元线性回归模型和
Signatura(or"Sig."or"Signa.")the"signature"sectionofamedicalprescription,whichcontainsdirectionstoth
2个例数太少了啊再问:只有两个样本啊,两个数据,这个怎么解决啊?再答:做不了相关